2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008"

Transcript

1 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008

2 Αλεξανδρος Γ. Συγκελακης 1 Το µικρό Θεώρηµα του Fermat και η γενίκευσή του Θεώρηµα 1.1 Εάν p πρώτος και a ένας ϕυσικός αριθµός τότε : (i) a p a (mod p) (ii) (Το µικρό ϑεώρηµα του Fermat) εάν (a, p) = 1 τότε a p 1 1 (mod p). Απόδειξη : Σχόλιο : Υπάρχουν πολλές αποδείξεις του µικρού Θεωρήµατος του Fermat. Επιλέξαµε αυτή η οποία χτίζει ϐήµα-ϐήµα την απόδειξη και είναι µέσα στις δυνατότητες ενός µαθητή µε ενδιαφέρον για τα µαθηµατικά. (i) Θα κάνουµε χρήση της µαθηµατικής επαγωγής. Για a = 1 ισχύει τετριµµένα. Ας υποθέσουµε ότι p a p a. Θα αποδείξουµε ότι p (a+ 1) p (a + 1). Απ τον τύπο του διωνύµου του Newton (1), έχουµε ( ) ( ) ( ) p p p (a + 1) p = a p + a p 1 + a p a p 1 Συνεπώς (a + 1) p a p 1 = ( ) p a p ( ) ( ) p p a p a. 2 p 1 Οµως το p διαιρεί το δεξί µέλος (2) άρα και το αριστερό. Συνδιάζοντας αυτό µε την επαγωγική υπόθεση, έχουµε ότι 1 (a + b) n = p [(a + 1) p a p 1] + (a p a) = (a + 1) p (a + 1). n ( ) n a k b n k. k k=0 2 Η απόδειξη αυτού αφήνεται ως άσκηση στους αναγνώστες. Τα δύο ϐήµατα που χρειάζονται για την απόδειξη είναι : (a) Το γινόµενο n διαδοχικών ακεραίων διαιρείται από το n! και (b) εαν p ( ( p πρώτος, τότε οι 1), p ) ( 2,..., p p 1) διαιρούνται από το p. ags 1

3 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι (ii) Προφανώς από το (i) έχουµε p a p a p a(a p 1 1) που σε συνδιασµό µε το (a, p) = 1 δίνει το Ϲητούµενο p a p 1 1. Παράδειγµα 1.1 (i) Αφού (2, 11) = 1 και ο 11 είναι πρώτος, ϑα είναι (mod 11). Πράγµατι όταν το 2 10 = 1024 διαιρεθεί µε το 11, αφήνει υπόλοιπο 1. (ii) Με µεγαλύτερα νούµερα : π.χ. οι αριθµοί = 4840 και 101 είναι πρώτοι µεταξύ τους και αφού ο 101 είναι πρώτος, έχουµε (mod 101). Πόρισµα 1.1 Εαν p πρώτος και a ένας ϕυσικός αριθµός µε (a, p) = 1, και d είναι ο µικρότερος εκθέτης για τον οποίο ισχύει τότε d p 1. a d 1 (mod p) Η απόδειξη αφήνεται ως άσκηση στους αναγνώστες. 2 Η συνάρτηση του Euler Για δοσµένο ϕυσικό αριθµό n 1, συµβολίζουµε µε ϕ(n) το πλήθος των ϕυσικών αριθµών των µικρότερων ή ίσων του n που είναι πρώτοι προς τον n. Με αυτό τον τρόπο ορίσαµε µία συνάρτηση ϕ : N N µε ϕ(n) = {k N\k n και (a, n) = 1} (3). 3 Το σύµβολο {...} συµβολίζει το πλήθος των στοιχείων του συνόλου {...}. 2

4 Αλεξανδρος Γ. Συγκελακης Παράδειγµα 2.1 ϕ(9) = 6 διότι οι 6 αριθµοί 1, 2, 4, 5, 7, 8 είναι µικρότεροι και πρώτοι προς το 9. Ιδιότητες της συνάρτησης Euler (i) ϕ(1) = 1 (ii) Είναι ϕανερό ότι εάν n = p πρώτος, τότε ϕ(p) = p 1 καθώς όλοι οι αριθµοί οι µικρότεροι του p, δηλαδή οι 1, 2,..., p 1, είναι πρώτοι προς τον p. (iii) Η συνάρτηση ϕ είναι πολλαπλασιαστική δηλαδή εαν (m, n) = 1, τότε ϕ(m n) = ϕ(m) ϕ(n) (Για παράδειγµα ϕ(21) = ϕ(3 7) = ϕ(3) ϕ(7) = (3 1) (7 1) = 12). (iv) Εαν p πρώτος, τότε ϕ(p k ) = p k p k 1 = p k 1 (p 1) [Απλά λογαριάστε το πλήθος των αριθµών που είναι µικρότεροι ή ίσοι του p k και είναι πρώτοι προς τον p k (ή αντίθετα, αφαιρέστε τα πολλαπλάσια του p τα οποία σε πλήθος είναι p k 1 )]. (v) Γενικά, εαν n = p k 1 1 p k 2 2 p k l l η ανάλυση του n σε πρώτους (διακεκριµένους µεταξύ τους) παράγοντες, χρησιµοποιήστε την ιδιότητα (iii) για να δείξετε ότι : ϕ(n) = p k (p 1 1) p k (p 2 1) p k l 1 l (p l 1) ) ) ) = n (1 (1 1p1 1p2 (1 1pl = n l ) (1 1pi i=1 ags 3

5 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι Παράδειγµα 2.2 Είναι ϕ(1200) = ϕ( ) = 1200 = = 320 ( 1 1 ) ( 1 1 ) ( 1 1 ) Αρα µε αυτό τον τρόπο ϐρήκαµε, µε πολύ απλό τρόπο, ότι το πλήθος των ϕυσικών που είναι µικρότεροι απ το 1200 και πρώτοι προς αυτόν είναι 320. Παράδειγµα 2.3 (i) Να αποδειχθεί ότι οι ϕυσικοί αριθµοί n N\{4} για τους οποίους ισχύει ϕ(n) 2 (mod 4) είναι είτε της µορφής n = p k είτε της µορφής n = 2p k, όπου k N και ο p ένας πρώτος µε p 3 (mod 4). (ii) Να αποδειχθεί ότι δεν υπάρχει ϕυσικός αριθµός n µε ϕ(n) = 14. Λύση : (i) Θα δείξουµε ότι στην ανάλυση του n σε πρώτους αριθµούς, δε γίνεται να υπάρχουν περισσότεροι από δύο διακεκριµένοι πρώτοι αριθµοί οι οποίοι να είναι 3. Γι αυτό, ας υποθέσουµε αντίθετα, ότι Τότε n = p k 1 1 p k 2 2 p k l l, p i 3 i = 1,..., l και l 2. ϕ(n) = p k (p 1 1)p k (p 2 1) p k l 1 l (p l 1) Οµως, καθώς l 2, υπάρχουν τουλάχιστον 2 άρτιοι παράγοντες µεταξύ των (p 1 1), (p 2 1),..., (p l 1). Αρα ϕ(n) 0 (mod 4), άτοπο. Αρα n = 2 r p k. Εαν r 3 (r 2 διότι n 4), τότε ϕ(n) = 2 r 1 p k 1 (p 1) 0 (mod 4), άτοπο. Αρα, r = 0, 1 (r 2 διότι n 4) συνεπώς n = p k ή n = 2p k. 4

6 Αλεξανδρος Γ. Συγκελακης Εµεινε να δείξουµε ότι p 3 (mod 4). Εαν αντίθετα ήταν p 1 (mod 4) (4), τότε ϑα είχαµε (και στις δύο περιπτώσεις για τον n) ϕ(n) = p k (p 1) 0 (mod 4), άτοπο. Ετσι αποδείχθηκε η Ϲητούµενη. (ii) Πρόκειται για άµεση εφαρµογή του πρώτου ερωτήµατος. εν σταµατάνε όµως εδώ οι πολύ σηµαντικές εφαρµογές της συνάρτησης του Euler. Υπάρχουν πολλές ακόµη εφαρµογές και σπουδαία ϑεωρή- µατα που την χρησιµοποιούν. Κλείνουµε αυτή την παράγραφο µε το Θεώρηµα του Euler, χωρίς απόδειξη (καθώς υπάρχει σε πολλά κλασσικά ϐιβλία Θεωρίας Αριθµών), το οποίο αποτελεί γενίκευση του µικρού Θεωρήµατος του Fermat. Θεώρηµα 2.1 (Θεώρηµα Euler ) Εαν a είναι ϕυσικός πρώτος προς τον n τότε ισχύει a ϕ(n) 1 (mod n). Παρατήρηση : Εαν n = p, τότε παίρνουµε το µικρό Θεώρηµα του Fermat. Παράδειγµα 2.4 Επειδή ϕ(9) = 6, και (9, 4) = 1 έχουµε ότι (mod 9). Πόρισµα 2.1 Εαν a είναι ϕυσικός πρώτος προς τον n, και k l (mod ϕ(n)), τότε a k a l (mod n). Απόδειξη : Ας υποθέσουµε χωρίς ϐλάβη της γενικότητας ότι k l. Τότε λόγω της k l (mod ϕ(n)), συµπεραίνουµε ότι υπάρχει ακέραιος π τέτοιος ώστε k = πϕ(n) + l άρα, λόγω και του ϑεωρήµατος του Euler, έχουµε a k = a l ( a ϕ(n)) l al 1 l a l (mod n) 4 Προφανώς αφού p 2, άρα p περιττός οπότε δεν γίνεται να είναι p 0, 2 (mod 4) ags 5

7 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι 3 Μία χρήσιµη εφαρµογή του Θεωρήµατος Euler σε µία κατηγορία ασκήσεων από Μαθη- µατικούς διαγωνισµούς Ας δώσουµε µερικές ασκήσεις και τον τρόπο µε τον οποίο µπορούµε να εργαστούµε ώστε να τις λύσουµε µεθοδικά και εύκολα µε τα παραπάνω εφόδια. Μία άσκηση της 6ης Εθνικής Μαθηµατικής Ολυµπιάδας του 1989 ήταν : Παράδειγµα 3.1 Για ποιές τιµές του n N ο αριθµός 1 n +2 n +3 n διαιρείται µε το 7 ; Σχόλιο : Θα παρουσιάσουµε αρχικά (1η Λύση) την εξαιρετική λύση της συναδέλφου Ε. Μήτσιου που δηµοσιεύθηκε τότε στο περιοδικό «ιάσταση» και κατόπιν (2η Λύση) κάνοντας χρήση της παραπάνω ϑεωρίας. 1η Λύση (Ε. Μήτσιου) Για n = 1 η δοθείσα παράσταση δεν διαιρείται µε το 7, για n = 2 διαιρείται µε το 7 και για n = 3 δεν διαιρείται µε το 7. Για n = 2k έχουµε 1 2k +2 2k +3 2k = 1+4 k +9 k = 1+4 k +πoλ.7+2 k = πoλ k +4 k (1) { Εάν k = 3l τότε η (1) γίνεται πoλ l + 4 3l = πoλ l + 64 l = πoλ πoλ l + πoλ l = πoλ { Εάν k = 3l + 1 τοτε η (1) γίνεται πoλ l l+1 = πoλ l l { Εάν k = 3l + 2 τοτε η (1) γίνεται = πoλ (πoλ l ) + 4(πoλ l ) = πoλ = πoλ.7 πoλ l l+2 = πoλ l l = πoλ πoλ l + πoλ l = πoλ = πoλ.7 6

8 Αλεξανδρος Γ. Συγκελακης Αρα εάν n = 2k, τότε πρέπει k = 3l + 1 ή k = 3l + 2, δηλαδή n = 6l + 2 ή n = 6l + 4. Για n = 2k + 1 έχουµε 1 2k k k+1 = k k = k + πoλ k = πoλ.7 + 2(1 + 2 k + 4 k ) + 2 k 1 Βρήκαµε ότι αν k = 3l + 1 ή k = 3l + 2, τότε k + 4 k = πoλ.7,. Θα εξετάσουµε το 2 k 1 για k = 3l + 1 ή k = 3l + 2. { Αν k = 3l + 1 τότε 2 k 1 = 2 3l+1 1 = 2 8 l 1 = πoλ l 1 = πoλ άρα όχι πoλ.7 { Αν k = 3l + 2 τότε 2 k 1 = 2 3l+2 1 = 4 8 l 1 = πoλ l 1 = πoλ άρα όχι πoλ.7 Αρα το 2 k 1 είναι πoλ.7 για k = 3l γιατί 2 3l 1 = 8 l 1 = πoλ l 1 = πoλ.7 όµως τότε το 1 k + 2 k + 4 k δεν είναι πoλ.7. Αρα τελικά πρέπει ο n να είναι πoλ.2 και όχι πoλ.3, δηλαδή πρέπει n = 6k + 2 ή n = 6k + 4 ή αλλιώς n = 6k ± 2. 2η Λύση Αφού το 7 είναι πρώτος αριθµός και (7, 2) = 1 = (7, 3), από το Μικρό Θεώρηµα του Fermat ισχύει ότι (mod 7) οπότε (mod 7) (mod 7) οπότε (mod 7) Αρα, το υπόλοιπο του 2 n µε το 7, ϑα επαναλαµβάνεται το πολύ κάθε 6 ϐήµατα και µάλιστα το ϐήµα της επανάληψης (Πόρισµα 1.1), ϑα είναι διαιρέτης του 6 (5) (δηλαδή 1, 2, 3, 6). Οµοια και για το υπόλοιπο της 5 Σηµειώστε πόσο ϕυσιολογικά έρχεται τώρα, ότι οι περιπτώσεις που πρέπει να πάρουµε για το n, είναι ως προς το υπόλοιπο που αφήνει όταν διαιρεθεί µε το 6, κάτι που ϕαίνεται και στην 1η λύση. ags 7

9 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι διαίρεσης του 3 n µε το 7. Αυτό που µένει λοιπόν να κάνουµε για να δούµε εποπτικά τα παραπάνω, είναι ένας απλός πίνακας δυνάµεων για να ϐρούµε το 1 n + 2 n + 3 n για τις διάφορες τιµές του υ, όπου n = 6k + υ, υ = 0, 1, 2, 3, 4, 5, ϑα χρειαστούν το πολύ 6 ϐήµατα για να δούµε τα δυνατά υπόλοιπα των 2 n και 3 n µε το 7. υ = n (mod 6) επανάληψη ανα 1 n (mod 7) n (mod 7) n (mod 7) n + 2 n + 3 n (mod 7) Τώρα ϕαίνεται καθαρά από τον παραπάνω πίνακα οτι ο αριθµός 1 n + 2 n + 3 n είναι πολλαπλάσιο του 7, όταν το n έχει τη µορφή n = 6k + 2 ή 6k + 4. ( Η ακόµη, ότι ο αριθµός 1 n + 2 n + 3 n, διαιρούµενος µε το 7 δεν αφήνει ποτέ υπόλοιπο 2, 4, 5.) Η µέθοδος αυτή µπορεί να εφαρµοστεί και για πολυπλοκότερα προβλή- µατα τα οποία, όπως το παρακάτω, που χωρίς συγκεκριµένη στρατηγική, είναι δύσκολο να επιλυθούν. Παράδειγµα 3.2 Να ϐρεθούν όλα τα δυνατά υπόλοιπα της διαίρεσης του αριθµού A = 2 3 n n n+1 7 δια του 11. Λύση Σχόλιο : Απλά ϑα προσαρµόσουµε τα δεδοµένα στον πίνακα προσθέτοντας δύο ακόµη γραµµες για το n + 1 και το 3n + 1 που εµφανίζονται ως εκθέτες στη δοθείσα παράσταση. Αφού (11, 3) = (11, 7) = (11, 5) = 1, ο ϱυθµός επανάληψης των 3 n, 7 n, 5 n ϑα είναι διαιρέτης του ϕ(11) = 10 (δηλαδή η επανάληψη τώρα ϑα είναι είτε ανά 1, 2, 5 ή 10) και έτσι ο αντίστοιχος πίνακας γίνεται (6) 6 Προφανώς δεν χρειάζονται οι γραµµές των 3 n (mod 11), 5 n (mod 11), 7 n (mod 11) απλά µπαίνουν για να γίνει µια πρώτη σύγκριση. 8

10 Αλεξανδρος Γ. Συγκελακης n (mod 10) επανάληψη ανα n + 1 (mod 10) n + 1 (mod 10) n (mod 11) n (mod 11) n (mod 11) n+1 (mod 11) n (mod 11) n+1 (mod 11) A Συµπεραίνουµε ότι εαν ο n είναι της µορφής n = 10k + 2, τότε όταν ο A διαιρεθεί µε το 11, αφήνει υπόλοιπο 1. Ετσι, είναι έτοιµη µία (απαιτητική) άσκηση που µπορεί να δειχτεί πλέον µε επαγωγή : Ασκηση : Να αποδειχθεί ότι εαν το τελευταίο ψηφίο του αριθµού n είναι το 2, τότε ο A αφήνει υπόλοιπο 1 όταν διαιρεθεί µε το 11. Σχόλια : 1. Ασκήσεις όπως η παραπάνω αποδεικνύονται µε επαγωγή εαν γνωρίζουµε όµως το αποτέλεσµα της διαίρεσης µε τον αριθµό. Για παράδειγµα παίρνω µία άσκηση από το ϐιβλίο του αείµνηστου Θ.Ν. Καζαντζή, Θεωρία Αριθµών, Β Εκδοση, Εκδόσεις Μαθηµατική Βιβλιοθήκη, Θεσσαλονίκη Ασκηση Να δείξετε ότι εαν n ϕυσικός 1 τότε η παράσταση 2 4n+1 2 2n 1 διαιρείται από το 9. Κατασκευάζοντας τον αντίστοιχο πίνακα, ϑα διαπιστώσουµε ότι αφού (2, 9) = 1 και ϕ(9) = 6, τα υπόλοιπα της διαίρεσης του 2 n µε το 9 ϑα επαναλαµβάνονται ανά αριθµό που είναι διαιρέτης του 6. Μπορεί για το συγκεκριµένο παράδειγµα (που η λύση µε επαγωγή είναι πολύ εύκολη), η διαδικασία κατασκευής του πίνακα να είναι επίπονη, αλλά ϕανταστείτε ότι ϑα µπορούσατε µε διάφορες δοκιµές να ανακαλύψετε µία τόσο συµµετρικά ϕτιαγµένη άσκηση! 2. Με τον παραπάνω τρόπο µπορείτε να κατασκευάσετε τις δικές σας ασκήσεις όπως την ακόλουθη που κατασκεύασα πριν από λίγο καιρό πειραµατιζόµενος µπροστά στον υπολογιστή µε την παραπάνω µέθοδο : ags 9

11 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι Ασκηση 1: Να δείξετε ότι εαν n 0 (mod 6) τότε 1 n + 2 n + 3 n + 4 n + 5 n + 6 n 0 (mod 7). Η λύση της είναι αρκετά απλή εαν κατασκευάσετε τον γνωστό πίνακα και αφήνεται ως άσκηση. Ως γενίκευση αυτής της παρατήρησης µου γεννήθηκε το ερώτηµα εαν ισχύει γενικά και το έθεσα ως προβληµατισµό στο Forum (7) : Ασκηση 2: Εαν n 0 (mod (p 1)) τότε p 1 i n 0 (mod p) i=1 Λύση : Λύση σε αυτό το πρόβληµα έδωσε (µε εξαιρετικό τρόπο) ο Στέλιος, την οποία παραθέτω παρακάτω για να την απολαύσετε. Κατάρχήν παρατηρούµε ότι ( ) n + 2 p n+2 = p + [ (p 1)] 1 ( ) n + 2 [ (p 1) 2] 2 ( ) n + 2 [1 + + n n (p 1) n+1] n + 1 Άρα αν p [1 k + 2 k + + (p 1) k ] για κάθε k = 1, 2,, n, όπου n {1, 2,, (p 3)}, τότε p [(n + 2)(1 n n (p 1) n+1 )] και επειδή n {1, 2,, (p 3)} ϑα ισχύει ότι ο p δεν διαιρεί το (n+2). Συνεπώς p [1 n n (p 1) n+1 ]. Επαγωγικά λοιπόν αποδεικνύουµε ότι επειδή p [ (p p(p 1) 1)] = ϑα ισχύει ότι p [1 k + 2 k + + (p 1) k ] για κάθε 2 k = 1, 2,, (p 2) και αφού a (p 1)m+u (a p 1 ) m a u a u (mod p) για κάθε a µε (a, p) = 1 (8) 7 orum/viewtopic.php?t = διότι από το Μικρό Θεώρηµα του Fermat ισχύει ότι a p 1 1 (mod p) αν (a, p) = 1 10

12 Αλεξανδρος Γ. Συγκελακης προκύπτει ότι p [1 n + 2 n + + (p 1) n ] για κάθε n N µε n 0 (mod p 1), όπου p πρώτος µεγαλύτερος του 2. Σχόλιο : Στη ϐιβλιογραφία, έµαθα αργότερα, αναφέρεται ως Θεώρηµα Chevalley-Warning του οποίου η απόδειξη δεν γίνεται συνήθως µε σ- τοιχειώδη τρόπο αφού τα µέσα που διαθέτει η Θεωρία Οµάδων, είναι πολύ ισχυρά και ϐγάζουν το επιθυµητό αποτέλεσµα της άσκησης σε δύο γραµµές. Αυτή όµως είναι και η αξία της λύσης του Στέλιου. Οτι µε στοιχειώδη µέσα αποδεικνύει αυτή την Πρόταση. Ακολουθεί µία πάρα πολύ καλή άσκηση από Μαθηµατικό ιαγωνισµό µε την οποία τελειώνουµε το άρθρο. Πριν δώσουµε την εκφώνηση δίνουµε ένα πολύ ϐασικό Λήµµα : Λήµµα 3.1 Κάθε πρώτος αριθµός p > 3, είναι της µορφής 6k + 1 ή 6k + 5 (Πάρτε ένα οποιοδήποτε ϕυσικό αριθµό n. Τότε n = 6k + υ, υ = 0, 1,..., 5 και δείξτε (ϕανερό) ότι υ 2, 3, 4 εαν n πρώτος) Παράδειγµα 3.3 (2ος Εσωτερικός ιαγωνισµός ΕΜΕ 1989) Να αποδειχθεί ότι εαν p πρώτος, τότε 42p 3 p 2 p 1. Απόδειξη : Αφού 42p = p άρα αρκεί να δείξουµε οτι ο A = 3 p 2 p 1 είναι πολλαπλάσιο των πρώτων αριθµών 2, 3, 7, p (9) (i) Με το 2: Φανερά ο A είναι άρτιος άρα A 0 (mod 2). (ii) Με το 3: A = 3 p (2 p +1) = 3 p (2+1)(2 p 1 +2 p ) 0 (mod 3) (iii) Με το p: Απ το Θεώρηµα 1.1(i) έχουµε 3 p 3 (mod p) και 2 p 2 (mod 2) Αρα A = 3 p 2 p = 0 (mod p). (iv) Με το 7: Σύµφωνα λοιπόν µε το Λήµµα 3.1, κάθε πρώτος αριθµός είναι της µορφής p = 6k + 1 ή p = 6k Θυµίζουµε οτι εάν p, q είναι δύο διακεκριµένοι πρώτοι αριθµοί και n ϕυσικός, µε p n και q n τότε p q n. ags 11

13 Μικρο Θεωρηµα του Fermat, η συναρτηση του Euler και Μαθηµατικοι ιαγωνισµοι Εαν p = 6k + 1 τότε λόγω του Μικρού Θεωρήµατος του Fermat, αφού (2, 7) = 1, είναι (mod 7) άρα 2 6k 1 (mod 7) άρα 2 6k+1 2 (mod 7) Οµοια, αφού (3, 7) = 1 έχουµε ότι και έτσι 3 6k+1 3 (mod 7) A = 3 p 2 p = 0 (mod 7) Εαν p = 6k + 5 τότε λόγω όµοια όπως παραπάνω έχουµε 2 6k = 32 4 (mod 7) και Αρα τελικά 3 6k = (mod 7) A = 3 p 2 p = 0 (mod 7) Σε κάθε περίπτωση λοιπόν έχουµε A 0 (mod 7) Σχόλιο : Παρατηρήστε ότι (2, 7) = 1 = (3, 7) και ϕ(7) = 6 άρα τα υπόλοιπα της διαίρεσης των 2 k και 3 k µε το 7, σύµφωνα µε όσα είπαµε παραπάνω, επαναλαµβάνονται ανά έναν αριθµό ο οποίος είναι διαιρέτης του 6. Φτιάξτε λοιπόν τον αντίστοιχο πίνακα, όπως έγινε στα παραπάνω παραδείγµατα, για να δείξετε ότι στις περίπτωσεις p = 6k + 1, p = 6k + 5 έχουµε ότι A 0 (mod 7). ικαιολογείται λοιπόν µε τα παραπάνω ο λόγος για τον οποίο χρειάστηκε να εργαστούµε mod 6 και ο οποίος µας οδήγησε να καταλήξουµε στο (γενικό και πολύ χρήσιµο) Λήµµα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2014/nt2014.html https://stes.google.com/ste/maths4edu/home/14

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt.html Σάββατο 20 Απριλίου 2013 Ασκηση 1. 1) είξτε ότι η

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 ιαιρετότητα και Ισοτιµίες Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης Στη µνήµη του δασκάλου µου, Χάρη Βαφειάδη... www.math.uoc.gr/

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

F 5 = (F n, F n+1 ) = 1.

F 5 = (F n, F n+1 ) = 1. Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη Σηµειώσεις Θεωρίας Αριθµών Θ. Θεοχάρη-Αποστολίδη Ευχαριστώ ιδιαίτερα τη ϕοιτήτριά µου Μαρίνα Παλαιστή για τη µεταφορά του χειρογράφου µου σε κείµενο "tex" Κεφάλαιο 1 Βασικές Ιδιότητες Ισοδυναµιών Η ϑεωρία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt205/nt205.html ευτέρα 27 Απριλίου 205 Ασκηση. είξτε ότι για κάθε

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n

Διαβάστε περισσότερα

Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p.

Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p. Κεφάλαιο 9 Οµάδες συγκεκριµένης τάξης Στο κεφάλαιο αυτό ϑα εφαρµόσουµε τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κεφάλαια για να περιγράψουµε οµάδες τάξης pq, όπου p, q είναι διακεκριµένοι πρώτοι αριθµοί,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 13 ιαιρετότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έστω α,β δυο ακέραιοι µε β 0. Θα λέµε ότι ο β διαιρεί τον α και θα γράφουµε β/α όταν η διαίρεση του α µε τον β είναι τέλεια. ηλαδή όταν υπάρχει ακέραιος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων.

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. Κεφάλαιο 4 Πεπερασµένα σώµατα Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. 4.1 Βασικές Εννοιες Εστω F ένα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 233 4. Χαρακτηρισµοί

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Γραµµικές απεικονίσεις Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπολογικοί χώροι Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κρυπτογραφία και Πολυπλοκότητα

Κρυπτογραφία και Πολυπλοκότητα Απόδειξη του Αλγορίθµου Tonelli - Shanks Σχολή Εφαρµοσµένων και Φυσικών Επιστηµών ευτέρα 13 Φεβρουαρίου 2011 Το Πρόβληµα Να ϐρούµε x 1, x 2 Z p τέτοια ώστε: για κάποιο a Z p. x 2 i a (mod p) i 1, 2 (1)

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2016-2017 Τµηµα Β ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html 19 Οκτωβρίου 2016 Το παρόν

Διαβάστε περισσότερα

ΧΡΗΣΙΜΑ ΘΕΩΡΗΜΑΤΑ ΣΤΗΝ ΑΝΑΛΥΣΗ

ΧΡΗΣΙΜΑ ΘΕΩΡΗΜΑΤΑ ΣΤΗΝ ΑΝΑΛΥΣΗ ΧΡΗΣΙΜΑ ΘΕΩΡΗΜΑΤΑ ΣΤΗΝ ΑΝΑΛΥΣΗ Νίκος Ιωσηφίδης, Τρεµπεσίνας 6, 591 00 ΒΕΡΟΙΑ e-mail: iossiid@yahoo.gr Το άρθρο αφιερώνεται στον αείµνηστο Θεόδωρο Καζαντζή που επέκτεινε τα όρια της ανάλυσης µε δικές του

Διαβάστε περισσότερα

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: 2 Αποδείξεις Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: Εκδοση 2005/03/22 Εξαντλητική µέθοδος ή µέθοδος επισκόπησης. Οταν το πρόβληµα έχει πεπερασµένες αριθµό περιπτώσεων τις εξετάζουµε

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα