ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ"

Transcript

1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ

2 [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό (deterministic) πείραμα. Ένα πείραμα ονομάζεται πείραμα τύχης (random experiment) όταν δεν μπορούμε να προβλέψουμε με ακρίβεια το αποτέλεσμά του, δηλαδή ένα πείραμα με αβέβαιο αποτέλεσμα. Δειγματικός Χώρος Όλα τα αποτελέσματα που μπορούν να εμφανιστούν σε ένα πείραμα τύχης λέγονται δυνατά αποτελέσματα ή δυνατές περιπτώσεις του πειράματος. Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα. Αν δηλαδή ω, ω2,..., ω κ είναι τα δυνατά αποτελέσματα ενός πειράματος τύχης, τότε ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: = { ω, ω2,..., ω κ }. Ενδεχόμενα Το σύνολο που έχει ως στοιχεία ένα ή περισσότερα αποτελέσματα ενός πειράματος τύχης λέγεται ενδεχόμενο (event) ή γεγονός. Είναι φανερό ότι ένα ενδεχόμενο είναι υποσύνολο του δειγματικού χώρου. Ένα ενδεχόμενο λέγεται απλό όταν έχει ένα μόνο στοιχείο και σύνθετο αν έχει περισσότερα στοιχεία. Όταν το αποτέλεσμα ενός πειράματος, σε μια συγκεκριμένη εκτέλεσή του είναι στοιχείο ενός ενδεχομένου, τότε λέμε ότι το ενδεχόμενο αυτό πραγματοποιείται ή συμβαίνει. Γι αυτό τα στοιχεία ενός ενδεχομένου λέγονται και ευνοϊκές περιπτώσεις για την πραγματοποίησή του. Ο ίδιος ο δειγματικός χώρος ενός πειράματος θεωρείται ότι είναι ενδεχόμενο, το οποίο μάλιστα πραγματοποιείται πάντοτε, αφού όποιο και αν είναι το αποτέλεσμα του πειράματος θα ανήκει στο. Γι αυτό το λέγεται βέβαιο ενδεχόμενο. Δεχόμαστε ακόμα ως ενδεχόμενο και το κενό σύνολο που δεν

3 [2] πραγματοποιείται σε καμιά εκτέλεση του πειράματος τύχης. Γι αυτό λέμε ότι το είναι το αδύνατο ενδεχόμενο. Το πλήθος των στοιχείων ενός ενδεχομένου Α θα το συμβολίζουμε με N( ). Πράξεις με Ενδεχόμενα Το ενδεχόμενο, που διαβάζεται Α τομή Β ή Α και Β και πραγματοποιείται, όταν πραγματοποιούνται συγχρόνως τα Α και Β. Το ενδεχόμενο, που διαβάζεται Α ένωση Β ή Α ή Β και πραγματοποιείται, όταν πραγματοποιείται ένα τουλάχιστον από τα Α, Β. Το ενδεχόμενο, που διαβάζεται όχι Α ή συμπληρωματικό του Α και πραγματο-ποιείται, όταν δεν πραγματοποιείται το Α. Το λέγεται και αντίθετο του Α. Το ενδεχόμενο, που διαβάζεται διαφορά του Β από το Α και πραγματοποιείται, όταν πραγματοποιείται το Α αλλά όχι το Β. Είναι εύκολο να δούμε ότι =. Στον παρακάτω πίνακα τα Α και Β συμβολίζουν ενδεχόμενα ενός πειράματος και το ω ένα αποτέλεσμα του πειράματος αυτού. Στην αριστερή στήλη του πίνακα αναγράφονται διάφορες σχέσεις για τα Α και Β διατυπωμένες στην κοινή γλώσσα, και στη δεξιά στήλη αναγράφονται οι ίδιες σχέσεις αλλά διατυπωμένες στη γλώσσα των συνόλων.

4 [3] Το ενδεχόμενο Α πραγματοποιείται Το ενδεχόμενο Α δεν πραγματοποιείται Ένα τουλάχιστον από τα Α και Β πραγματοποιείται Πραγματοποιούνται αμφότερα τα Α και Β Δεν πραγματοποιείται κανένα από τα Α και Β Πραγματοποιείται μόνο το Α ω ω (ή ω ) ω ω ω ( ) ω (ή ω ) Η πραγματοποίηση του Α συνεπάγεται την πραγματοποίηση του Β Ασυμβίβαστα Ενδεχόμενα Δύο ενδεχόμενα Α και Β λέγονται ασυμβίβαστα, όταν =. Δύο ασυμβίβαστα ενδεχόμενα λέγονται επίσης ξένα μεταξύ τους ή αμοιβαίως αποκλειόμενα. Δυο ακόμη χρήσιμες φράσεις: = 3 5 i) Πραγματοποιείται μόνο ένα από τα Α και Β. Επειδή θέλουμε να πραγματοποιείται μόνο το Α ή μόνο το Β, γραμμοσκιάζουμε τις επιφάνειες των Α και Β με εξαίρεση την τομή τους, δηλαδή την κοινή επιφάνειά τους. Α Β Παρατηρούμε ότι στην περίπτωση αυτή πραγματοποιείται ένα μόνο από τα και. Άρα, το ζητούμενο ενδεχόμενο είναι το ( ) ( ) ή ισοδύναμα το ( ) ( ). Β Α

5 [4] ii) Δεν πραγματοποιείται κανένα από τα Α και Β. ii) Επειδή θέλουμε να μην πραγματοποιείται κανένα από τα Α και Β, γραμμοσκιάζουμε την επιφάνεια του που είναι εκτός της ένωσης των Α και Β. Στην περίπτωση αυτή παρατηρούμε ότι το ζητούμενο σύνολο είναι συμπληρωματικό του, δηλαδή το ( ). ( ) Έννοια και Ιδιότητες Σχετικής Συχνότητας Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται κ φορές, τότε ο λόγος v κ ονομάζεται σχετική συχνότητα του Α και συμβολίζεται με f. Ιδιαίτερα αν ο δειγματικός χώρος ενός πειράματος είναι το πεπερασμένο σύνολο = { ω, ω2,..., ω λ } και σε ν εκτελέσεις του πειράματος αυτού τα απλά ενδεχόμενα { ω}, { ω2},...,{ ω λ ) πραγματοποιούνται κ, κ2,..., κ λ φορές κ κ2 κ αντιστοίχως, τότε για τις σχετικές συχνότητες f =, f2 =,..., fλ = v v v των απλών ενδεχομένων θα έχουμε:. 0 f, i=,2,..., λ (αφού 0 κi v ) i κ + κ κλ v = = =. v v 2 2. f f2 fλ Οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς (όχι πάντοτε ίδιους), καθώς ο αριθμός των δοκιμών του πειράματος επαναλαμβάνεται απεριόριστα. Το εμπειρικό αυτό εξαγόμενο, το οποίο επιβεβαιώνεται και θεωρητικά, ονομάζεται στατιστική ομαλότητα ή νόμος των μεγάλων αριθμών. λ

6 [5] Κλασικός Ορισμός Πιθανότητας Σε ένα πείραμα με ν ισοπίθανα αποτελέσματα ορίζουμε ως πιθανότητα του ενδεχομένου Α τον αριθμό: Πλήθος Ευνοϊκών Περιπτ ώ σεων N( ) P ( ) = = Πλήθος υνατών Περιπτ ώ σεων N( ). Από τον προηγούμενο ορισμό προκύπτει άμεσα ότι: N( ). P( ) = = N( ) 0 2. P( ) = 0 N( ) = 3. Για κάθε ενδεχόμενο Α ισχύει 0 P ( ), αφού το πλήθος των στοιχείων ενός ενδεχομένου είναι ίσο ή μικρότερο από το πλήθος των στοιχείων του δειγματικού χώρου. ΣΧΟΛΙΟ Όταν έχουμε ένα δειγματικό χώρο = { ω, ω2,..., ω ν } και χρησιμοποιούμε τη φράση παίρνουμε τυχαία ένα στοιχείο του, εννοούμε ότι όλα τα δυνατά αποτελέσματα είναι ισοπίθανα με πιθανότητα P( ω i ) =, i=,2,..., v. v Κανόνες Λογισμού των Πιθανοτήτων. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει: P ( ) = P ( ) + P ( ) ΑΠΟΔΕΙΞΗ Αν N( ) = κ και N( ) = λ, τότε το έχει κ + λ στοιχεία, γιατί αλλιώς τα Α και Β δε θα ήταν ασυμβίβαστα. Δηλαδή, έχουμε N( ) = κ + λ = N( ) + N( ). Επομένως:

7 [6] P ( ) = N( ) = N( ) N( ) + N( ) N( ) N( ) N( ) = + N( ) N( ) = P ( ) + P ( ) Η ιδιότητα αυτή είναι γνωστή ως απλός προσθετικός νόμος (simply additive law) και ισχύει και για περισσότερα από δύο ενδεχόμενα. Έτσι, αν τα ενδεχόμενα Α, Β και Γ είναι ανά δύο ασυμβίβαστα θα έχουμε P ( Γ ) = P ( ) + P ( ) + P( Γ ). 2. Για δύο συμπληρωματικά ενδεχόμενα Α και ισχύει: P ( ) = P ( ) ΑΠΟΔΕΙΞΗ Επειδή =, δηλαδή τα Α και είναι ασυμβίβαστα, έχουμε διαδοχικά, σύμφωνα με τον απλό προσθετικό νόμο: P ( ) = P ( ) + P ( ) P( ) = P ( ) + P ( ) = P ( ) + P ( ). Οπότε P ( ) = P ( ). 3. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου ισχύει: P ( ) = P ( ) + P ( ) P ( ) ΑΠΟΔΕΙΞΗ Για δυο ενδεχόμενα Α και Β έχουμε N( ) = N( ) + N( ) N( ), () αφού στο άθροισμα N( ) + N( ) το πλήθος των στοιχείων του υπολογίζεται δυο φορές.

8 [7] Αν διαιρέσουμε τα μέλη της () με N( ) έχουμε: N( ) N( ) N( ) N( ) = + N( ) N( ) N( ) N( ) και επομένως P ( ) = P ( ) + P ( ) P ( ). Η ιδιότητα αυτή είναι γνωστή ως προσθετικός νόμος (additive law). 4. Αν, τότε P ( ) P ( ) ΑΠΟΔΕΙΞΗ Επειδή έχουμε διαδοχικά: N( ) N( ) N( ) N( ) N( ) N( ) P ( ) P ( ). 5. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου ισχύει P ( ) = P ( ) P ( ). ΑΠΟΔΕΙΞΗ Επειδή τα ενδεχόμενα και είναι ασυμβίβαστα και ( ) ( ) =, έχουμε: P ( ) = P ( ) + P ( ). Άρα P ( ) = P ( ) P ( ).

9 [8] ΠΙΘΑΝΟΤΗΤΕΣ -_ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ: ) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α)= 7 30, Ρ(Β)= 7 5 και Ρ(Α Β)= 2. Να βρεθεί η πιθανότητα 3 Ρ(Α Β). 2) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α)= 3 8, Ρ(Β)= 5 8 και Ρ(Α Β)=. Να βρεθεί η πιθανότητα Ρ(Α Β). 4 3) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α)= 2, Ρ(Α Β)= 5 6 και Ρ(Α Β)=. Να βρεθεί η πιθανότητα 3 Ρ(Β). 4) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Β) =0,5, Ρ(Α Β)= 0,8 και Ρ(Α Β)=0,. Να βρεθεί η πιθανότητα Ρ(Α). 5) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α)= 2, Ρ(Β )= 2 και Ρ(Α Β)=. Να βρεθεί η πιθανότητα 3 2 Ρ(Α Β). 6) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α )=0,3, Ρ(Β)=0,6 και Ρ(Α Β)=0,8. Να βρεθεί η πιθανότητα Ρ(Α Β). P ( ) 3 7) Αν = να βρείτε τις πιθανότητες Ρ(Α) και Ρ(Α ). PÁ ( ) 4 PÁ ( ) 4 8) Αν = να βρείτε τις πιθανότητες Ρ(Α) και Ρ(Α ). P ( ) 5 9) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται : Ρ(Α)=0,5, Ρ(Β)=0,4 και Ρ(Α Β)=0,2. Να βρεθεί η πιθανότητα των ενδεχομένων i) να πραγματοποιείται ένα τουλάχιστον απ τα Α και Β ii) να μην πραγματοποιείται το Α iii) να πραγματοποιείται μόνο το Β iv) να μην πραγματοποιείται κανένα απ τα Α και Β v) να πραγματοποιείται ένα μόνο απ τα Α και Β

10 [9] 0) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται Ρ(Α)=0,5, Ρ(Β)=0,3 και Ρ(Α Β)=0,7. Να βρεθεί η πιθανότητα των ενδεχομένων i) να πραγματοποιούνται ταυτόχρονα τα Α και Β ii) να μην πραγματοποιείται το Α iii) να πραγματοποιείται μόνο το Β iv) να μην πραγματοποιείται κανένα απ τα Α και Β v) να πραγματοποιείται ένα μόνο απ τα Α και Β ) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου δίνονται Ρ(Α)=0,4, Ρ(Α Β)=0,8 και Ρ(Α Β)=0,3. Να βρεθεί η πιθανότητα των ενδεχομένων i) να πραγματοποιείται το Β ii) να μην πραγματοποιείται το Α iii) να πραγματοποιείται μόνο το Β iv) να μην πραγματοποιείται κανένα απ τα Α και Β v) να πραγματοποιείται ένα μόνο απ τα Α και Β 2) Από μια τράπουλα με 52 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : α) το χαρτί είναι πέντε. β) το χαρτί είναι καρό γ) το χαρτί είναι πέντε καρό δ) το χαρτί είναι πέντε ή καρό 3) Ένα κουτί περιέχει 0 Άσπρες 5 Μαύρες 5 Κόκκινες και 0 Πράσινες μπάλες. Επιλέγουμε μία μπάλα στην τύχη. Ποια είναι η πιθανότητα : α) η μπάλα να είναι Άσπρη β) η μπάλα να μην είναι Μαύρη γ) η μπάλα να είναι Άσπρη ή Μαύρη δ) η μπάλα να μην είναι ούτε κόκκινη ούτε πράσινη. 4) Σε μια τάξη με 30 μαθητές, ρωτήθηκαν οι μαθητές πόσα αδέρφια έχουν και απάντησαν Αριθμός μαθητών Αριθμός αδερφιών Αν επιλέξουμε έναν μαθητή στην τύχη ποιά είναι η πιθανότητα η οικογένειά του να έχει τρία παιδιά;

11 [0] 5) Έστω τα σύνολα ={ω Ν/ ω 20}, Α={ ω Ν/ ω πολλαπλάσιο του 3} και Β={ ω Ν/ ω πολλαπλάσιο του 4}. Αν επιλέξουμε τυχαία ένα στοιχείο του χώρου, ποια είναι η πιθανότητα α) το στοιχείο να ανήκει στο Α β) Το στοιχείο να μην ανήκει στο Β γ) το στοιχείο να ανήκει στο Α και στο Β δ) το στοιχείο να ανήκει στο Α ή στο Β ε) το στοιχείο να ανήκει μόνο στο Α στ) το στοιχείο να μην ανήκει σε κανένα απ τα δύο σύνολα 6) Σε έναν αγώνα η πιθανότητα να κερδίσει ο Λευτέρης είναι 30%, να κερδίσει ο Παύλος είναι 20% και να κερδίσει ο Νίκος είναι 40%. Να βρείτε την πιθανότητα α) να κερδίσει ο Λευτέρης ή ο Παύλος β) να μην κερδίσει ούτε ο Λευτέρης ούτε ο Νίκος. 7) Ένα ορισμένο κατάστημα δέχεται πιστωτικές κάρτες D ή V. Το 25% των πελατών έχουν κάρτα D, το 55% έχουν κάρτα V και το 5% έχουν και τις δύο κάρτες. Ποια είναι η πιθανότητα ένας πελάτης που επιλέγεται τυχαία να έχει μία τουλάχιστον από τις δυο κάρτες; 8) Το 0% των ατόμων ενός πληθυσμού έχουν υπέρταση, το 6% στεφανιαία καρδιακή ασθένεια και το 2% έχουν και τα δύο. Για ένα άτομο που επιλέγεται τυχαία ποια είναι η πιθανότητα να έχει α) τουλάχιστον μία ασθένεια; β) μόνο μία ασθένεια; 9) Από τους μαθητές ενός σχολείου το 80% μαθαίνει Αγγλικά, το 30% Γαλλικά και το 20% και τις δύο γλώσσες. Επιλέγουμε τυχαίως ένα μαθητή. Να βρείτε την πιθανότητα να μη μαθαίνει καμιά από τις δύο γλώσσες. 20) Σε μια κωμόπολη το 5% των νοικοκυριών δεν έχουν τηλεόραση, το 40% δεν έχουν βίντεο και το 0% δεν έχουν ούτε τηλεόραση ούτε βίντεο. Επιλέγουμε τυχαίως ένα νοικοκυριό. Να βρείτε την πιθανότητα να έχει τηλεόραση και βίντεο. 2) Από 20 μαθητές ενός Λυκείου, 24 μαθητές συμμετέχουν στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας, 20 μαθητές συμμετέχουν στο διαγωνισμό της Ενωσης Ελλήνων Φυσικών και

12 [] 2 μαθητές συμμετέχουν και στους δύο διαγωνισμούς. Επιλέγουμε τυχαία ένα μαθητή. Ποια είναι η πιθανότητα ο μαθητής: Α. να συμμετέχει σ έναν τουλάχιστον από τους δύο διαγωνισμούς; Β. να συμμετέχει μόνο σ έναν από τους δύο διαγωνισμούς; Γ. να μη συμμετέχει σε κανέναν από τους δύο διαγωνισμούς; 22) Στο σύλλογο καθηγητών ενός λυκείου το 55% είναι γυναίκες, το 40% των καθηγητών είναι φιλόλογοι και το 30% είναι γυναίκες φιλόλογοι. Επιλέγουμε τυχαία έναν καθηγητή για να εκπροσωπήσει το σύλλογο σε κάποια επιτροπή. Να υπολογίσετε τις πιθανότητες ο καθηγητής να είναι: α. γυναίκα ή φιλόλογος, β. γυναίκα και όχι φιλόλογος, γ. ούτε γυναίκα ούτε φιλόλογος, δ. μόνο γυναίκα ή μόνο φιλόλογος, ε) άνδρας και φιλόλογος, στ) άνδρας ή φιλόλογος. 23) Δίνεται ότι πιθανότητες: α)ρ(α Β) β) Ρ(Α-Β) γ) Ρ[(Α Β) ] P= ( ), 2 δ) Ρ[(Α-Β) (Β-Α)] 24) Δίνεται ότι 2 P= ( ), 3 P ( ) = και 3 P ( ) = και 2 P ( ) 2 3 =, να βρείτε τις P ( ) 5 6 =, να βρείτε τις πιθανότητες: α) Να μην πραγματοποιούνται ταυτόχρονα τα Α και Β. β) Να πραγματοποιείται ένα μόνο απ τα Α και Β. 25) Έστω Α, Β ενδεχόμενα ενός δειγματικού χώρου, ώστε να ισχύουν: Η πιθανότητα να πραγματοποιηθεί ένα τουλάχιστον από τα ενδεχόμενα Α, Β είναι 7. Οι πιθανότητες P(), P( ) δεν 8 είναι ίσες και ανήκουν στο σύνολο Χ={ 3 4, 2, 5 4 }, α. Να βρεθούν τα P(), P( ) και να αιτιολογήσετε την απάντησή σας β. Να βρεθούν οι πιθανότητες:

13 [2] i) Να πραγματοποιηθεί το ενδεχόμενο Α. ii) Να πραγματοποιηθεί μόνο το ενδεχόμενο Α. 26) Το 50% των κατοίκων μιας πόλης διαβάζουν την εφημερίδα α, το 40% των κατοίκων διαβάζουν την εφημερίδα β και δεν διαβάζουν την α,ενώ το 30% των κατοίκων διαβάζουν την εφημερίδα α και δεν διαβάζουν την εφημερίδα β. i) Ποια είναι η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία να διαβάζει και τις δύο εφημερίδες ii) Ποια είναι η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία, να διαβάζει την εφημερίδα β. iii) Ποια είναι η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία, να διαβάζει την εφημερίδα α ή να διαβάζει την εφημερίδα β; iv) Ποια είναι η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία, να μην διαβάζει καμία απ τις δύο εφημερίδες. 27) Σε ένα σχολείο με 400 μαθητές διδάσκονται η αγγλική και η γαλλική γλώσσα. Κάθε μαθητής είναι υποχρεωμένος να παρακολουθεί τουλάχιστον μία από τις παραπάνω ξένες γλώσσες. Από τους παραπάνω μαθητές 340 παρακολουθούν την αγγλική γλώσσα 240 τη γαλλική γλώσσα και 40 μαθητές παρακολουθούν και τις δύο γλώσσες. Επιλέγουμε τυχαία ένα μαθητή. Έστω Α το ενδεχόμενο να παρακολουθεί την αγγλική γλώσσα και Γ να παρακολουθεί τη γαλλική γλώσσα. α. Να βρείτε την πιθανότητα ο μαθητής να παρακολουθεί μόνο τη γαλλική γλώσσα. β. Να βρείτε την πιθανότητα ο μαθητής να παρακολουθεί μόνο την αγγλική γλώσσα. γ. Να βρείτε την πιθανότητα ο μαθητής να παρακολουθεί μία μόνο ξένη γλώσσα από αυτές. 28) Έχουμε 30 σφαίρες μέσα σ ένα δοχείο, αριθμημένες από το έως το 30. Επιλέγουμε στην τύχη μία σφαίρα. Έστω Α το ενδεχόμενο ο αριθμός της σφαίρας να είναι άρτιος και Β το ενδεχόμενο ο αριθμός αυτός να είναι πολλαπλάσιο του 5. Αν Α, Β είναι τα συμπληρωματικά ενδεχόμενα των Α και Β αντιστοίχως, να υπολογίσετε τις πιθανότητες : α. Ρ(Α), P () β. Ρ(Α Β)

14 [3] γ. Ρ(Α Β ) δ. P (( Β) (Α Β )) 29) Έστω ο δειγματικός χώρος ={,2,3,4,5,6,7,8,9,0} με ισοπίθανα απλά ενδεχόμενα. Για τα ενδεχόμενα Α, Β, Γ του είναι Α Β={,2,3,4,5,6}, Α Β={,3,4}, Α-Β={2,6} και Γ={χ /<χ 3 } α. Να υπολογίσετε τις πιθανότητες Ρ(Α), Ρ(Β), Ρ(Γ). β.να βρείτε την πιθανότητα, ώστε να πραγματοποιηθεί το Β και όχι το Γ. γ. Να βρείτε την πιθανότητα, ώστε να πραγματοποιηθεί μόνο ένα από τα Β και Γ. 30) Μία Τράπεζα χορηγεί διαφόρων τύπων δάνεια στους πελάτες της. Αν επιλεγεί τυχαία κάποιος πελάτης η πιθανότητα να έχει πάρει μόνο στεγαστικό ή μόνο καταναλωτικό δάνειο είναι 0,7 ενώ η πιθανότητα να μην έχει πάρει κανένα από τα δύο προηγούμενα δάνεια είναι 0,. α. Να βρείτε την πιθανότητα ένας πελάτης να έχει πάρει και τα δύο δάνεια. β. Αν επιπλέον η πιθανότητα να έχει πάρει μόνο στεγαστικό είναι 0,6 να βρείτε τις πιθανότητες των ενδεχομένων: i. «έχει πάρει καταναλωτικό». ii. «έχει πάρει μόνο καταναλωτικό». 3) Δίνεται ότι P Β ( ) =, 4 P( Α ) = και 20 P ( ) 2 =, να βρείτε τις πιθανότητες: α) Ρ(Α) β) Ρ(Β) γ) να πραγματοποιείται ένα μόνο απ τα Α και Β. δ) να μην πραγματοποιούνται ταυτόχρονα τα Α και Β 32) Σε ένα χωριό υπάρχουν μόνο 2 καφενεία το Α και το Β. Αν το 30% των κατοίκων πηγαίνει στο Α καφενείο, το 60% δεν πηγαίνει στο Β καφενείο, ενώ το 50% πηγαίνει σε ένα τουλάχιστον απ τα δύο καφενεία, να βρείτε: α) Το ποσοστό των κατοίκων που πηγαίνει και στα δύο καφενεία. β) Από αυτούς που πηγαίνουν σε ένα μόνο καφενείο, ποιοι είναι περισσότεροι αυτοί που πηγαίνουν μόνο στο Α ή αυτοί που πηγαίνουν μόνο στο Β.

15 [4] 33) Σε μια εταιρία εργάζονται 00 υπάλληλοι στο διοικητικό ή στο τεχνικό τμήμα. Απ αυτούς οι 60 είναι άνδρες, 40 άτομα εργάζονται στο διοικητικό τμήμα ενώ 0 γυναίκες εργάζονται στο τεχνικό τμήμα. Επιλέγουμε τυχαία ένα άτομο που εργάζεται στην εταιρία. Να βρείτε την πιθανότητα των ενδεχομένων : Α: «Το άτομο είναι άνδρας που εργάζεται στο τεχνικό τμήμα.» Β: «Τα άτομο είναι άνδρας ή εργάζεται στο διοικητικό τμήμα.» 34) Έστω δειγματικός χώρος με ισοπίθανα απλά ενδεχόμενα με ={,2,3,4,25} και τα ενδεχόμενα αυτού : Α={κ /κ πολλαπλάσιο του 3}, Β={ κ / κ-6<0} και Γ={ κ / 2κ-6 0}. α) Να βρεθούν τα ενδεχόμενα Α, Β και Γ. β) Να βρεθούν οι πιθανότητες Ρ(Α) και Ρ(Γ). γ) ΝΑ δείξετε ότι ΡΒ ( ) = και. 5 P Β ( ) = 25 δ) Να βρεθούν οι πιθανότητες Ρ(Α Β) Ρ(Α Β ) και Ρ(Β-Α ).

16 Γενικό Λύκειο Νεστορίου Σχολικό έτος Βοηθητικό Υλικό της Α Λυκείου

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών Οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version 17-4--2016) 2001 ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες 8,5 Απόδειξη: Επειδή τα ενδεχόμενα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version )

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version ) ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version 24-3-2016) 2001 2001 επαναληπτικές 2002 2002 επαναληπτικές 2003 2003 επαναληπτικές 2006 2006 επαναληπτικές 2005 2005 επαναληπτικές 2006 2006 επαναληπτικές 2007 2007

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π ι θ α ν ό τ η τ ε ς : Ο τομέας των Εφαρμοσμένων Μαθηματικών, που ασχολείται με την αξιολόγηση κατάλληλων στοιχείων έτσι ώστε να είναι μετρήσιμη η προσδοκία μας για την πραγματοποίηση

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος. ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Προβλήματα 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος. Βαθμολογικά ΚΟΡΙΤΣΙΑ ΑΓΟΡΙΑ επίπεδα Γυμνάσιο Λύκειο Γυμνάσιο Λύκειο Χαμηλή

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία Κεφάλαιο 1 Πιθανότητες 1.1 Δειγματικός χώρος - Ενδεχόμενα 1.1.1 Κατανόηση εννοιών - Θεωρία 1. Ποιό πείραμα λέγεται αιτιοκρατικό και ποιό πείραμα τύχης; 2. Τι ονομάζουμε δειγματικό χώρο ενός πειράματος

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων : 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Φ1 : ΠIΘΑΝΟΤΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 2014-2015 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Οι Ασκήσεις της Α Λυκείου

Οι Ασκήσεις της Α Λυκείου Οι Ασκήσεις της Α Λυκείου ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 0-0 Οι Ασκήσεις της Α Λυκείου ΣΥΝΟΛΑ. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Φ1 : ΠIΘΑΝΟΤΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 2014-2015 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ . Να βρείτε το δειγµατικό χώρο της ρίψης ενός ζαριού.. Επιλέγουµε ένα µαθητή Λυκείου και σηµειώνουµε το φύλο και την τάξη του. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος. 3. Τραβάµε ένα φύλλο από µία

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

http://lisari.blogspot.com .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε

Διαβάστε περισσότερα

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: ΘΕΜΑ 2 (479) α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii) B Γ iii) (A B) Γ iv) A (Μονάδες 12) β) Στο παρακάτω

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)

Διαβάστε περισσότερα

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος 5ος 22-0088_l_c_math_bm_146-192_28b.indd 1 18/09/2017 10:10 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Άσκηση 1 Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β. B. Το αντίστοιχο διάγραμμα Venn είναι το παρακάτω:

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β. B. Το αντίστοιχο διάγραμμα Venn είναι το παρακάτω: ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β Β1 α) Από τους κανόνες λογισμού των πιθανοτήτων έχουμε: P( A B) P( A) P( A B) P( A B) P( A) P( A B) και από τα δεδομένα 3 5 1 παίρνουμε: P( A B) P( A B) 4 8 8 β)

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1.1 Δειγματικός χώρος Ενδεχόμενα i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Προσδιορίζουν το δειγματικό χώρο ενός πειράματος τύχης και ενδεχόμενα

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' ) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α Λυκείου

ΠΙΘΑΝΟΤΗΤΕΣ Α Λυκείου ΠΙΘΑΝΟΤΗΤΕΣ Α Λυκείου Εργασία των μαθητριών: Αγαλιώτη Κωνσταντίνα, Αλεξοπούλου Γερασιμούλα, Αποστολοπούλου Χριστίνα, Βλαχοπούλου Φλώρα, Βλάχου Ουρανία Υπεύθυνος καθηγητής: κ. Ζούμας 2 ο Λύκειο Πεύκης [Ιανουάριος

Διαβάστε περισσότερα

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x). Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος 3ος 22-0088_l_c_math_bm_137-192_18b.indd 1 22/08/2017 11:32 ΣΥΓΓΡΑΦΕΙΣ: ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας 1 Πειραματικά Μοντέλα Μοντέλα:» Καθοριστικά» (π.χ. ο νόμος του Ohm)» Στοχαστικά ή πιθανοτικά» (π.χ. ένταση

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης fxc είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα)

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα) Πιθανότητες & Στατιστική Μέρος I. Εισαγωγή στις Πιθανότητες. 3 βασικές έννοιες Τυχαία Πειράματα (φαινόμενα) Δειγματικός χώρος Ενδεχόμενα Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής,

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ Θ Ε Μ Α 1 Από τους 120 μαθητές ενός Λυκείου, οι 24 μαθητές συμμετέχουν σε ένα διαγωνισμό Α, οι 20 μαθητές συμμετέχουν σε ένα διαγωνισμό Β και οι 12 μαθητές

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ 07 ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ 07 ΘΗΤΙ ΓΕΝΙΗΣ ΠΙΔΕΙΣ Γ ΛΥΕΙΟΥ Θέματα και παντήσεις Επιμέλεια: Ομάδα αθηματικών http://www.othisi.gr ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ 07 Δευτέρα, Ιουνίου 07 Γ ΛΥΕΙΟΥ ΓΕΝΙΗΣ ΠΙΔΕΙΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια Σημαντική μάλιστα ώθηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 8 ΧΡΟΝΙ ΕΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΘΗΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΤ ΘΕ 1. ν οι συναρτήσεις f και g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, για κάθε x ονάδες 7. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η εκάδα. Στην αρχή της σχολικής χρονιάς, οι 50 µαθητές της τρίτης τάξης ενός λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των διακοπών τους. Τα δεδοµένα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Γ ΛΥΚΕΙΟΥ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ... ΝΟΕΜΒΡΙΟΣ 013 ΘΕΜΑ 1 Ο 1Α. α). Πότε λέμε ότι μια συνάρτηση f

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

3/10/2016. Στατιστική Ι. 1 η Διάλεξη

3/10/2016. Στατιστική Ι. 1 η Διάλεξη Στατιστική Ι 1 η Διάλεξη 1 2 Φαινόμενα Πειράματα Αιτιοκρατικά Προσδιοριστικά Τυχαία Στοχαστικά Ένα αιτιοκρατικό πείραμα, κάθε φορά που εκτελείται, έχει το ίδιο αποτέλεσμα το οποίο μπορεί να προβλεφθεί

Διαβάστε περισσότερα

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘ. ΣΤΑΤΙΣΤΙΚΗ Γ 369 Α. Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) = x είναι f (x) = Β. Να γράψετε τις παραγώγους των παρακάτω συναρτήσεων: Μονάδες

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε

Διαβάστε περισσότερα