Numerické metódy matematiky I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Numerické metódy matematiky I"

Transcript

1 Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie )

2 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

3 Terminológia a základné vzťahy Majme štvorcovú maticu A. Jej vlastné čísla budeme označovať λ n a pravé resp. ľavé vektory x a y, Ak platí, že pre ktoré platí A potom λ i, x i y i a je symetrická, vlastné vektory generujú ortogonálnu bázu. Podobnostná transformácia P -1 AP nemení vlastné čísla matice A. det A λi 0 Ax λ x i i i T T i λiyi y A a

4 Terminológia a základné vzťahy Reálna ortogonálna matica je taká štvorcová matica Q, ktorej transponovaná matica je jej inverznou maticou. T T Q Q QQ I Ak Q je obdĺžniková matica, potom podmienky T Q Q I a QQ I nie sú ekvivalentné. T Podmienka Q T.Q = I hovorí, že matica Q je stĺpcovo ortogonálna. Podmienka Q.Q T = I hovorí, že matica Q je riadkovo ortogonálna.

5 Metóda singulárneho rozkladu - úvod Ak je počet rovníc sústavy M menší ako počet neznámych N, alebo ak M = N ale rovnice sú lineárne závislé, potom sústava nemá žiadne riešenie alebo má viac než jedno riešenie. V druhom prípade priestor riešení tvorí partikulárne riešenie pripočítané k ľubovoľnej lineárnej kombinácii N - M vektorov. Úlohu nájsť priestor riešení matice A je možné riešiť metódou singulárneho rozkladu matice A.

6 Metóda singulárneho rozkladu - úvod Ak je počet rovníc sústavy M väčší ako počet neznámych N, vo všeobecnosti neexistuje vektor riešenia a sústave rovníc sa hovorí preurčená. Môžeme ale nájsť najlepšie kompromisné riešenie, ktoré je najbližšie k tomu, aby vyhovovalo všetkým rovniciam. Ak najbližšie definujeme v zmysle najmenších štvorcov, t.j. že suma kvadrátu rozdielov medzi ľavou a pravou stranou rovnice je najmenšia, potom sa preurčený systém redukuje na (zvyčajne) riešiteľný problém zvaný metóda najmenších štvorcov.

7 Metóda singulárneho rozkladu - úvod Redukovaný systém rovníc môžeme zapísať ako systém N x N rovníc T T A A x A b. Tieto rovnice voláme normálne rovnice problému najmenších štvorcov. Metóda singulárneho rozkladu má veľa spoločného s problémom najmenších štvorcov, čo si ukážeme neskôr. Priame riešenie normálnych rovníc nie je vo všeobecnosti najlepším spôsobom hľadania riešenia najmenších štvorcov.

8 Metóda singulárneho rozkladu V mnohých prípadoch, keď GEM alebo LU rozklad zlyhajú, metódy singulárneho rozkladu (singular value decompisition, SVD) presne diagnostikujú, v čom je problém a v mnohých prípadoch tiež poskytnú vhodné numerické riešenie. SVD je tiež metóda na riešenie mnohých problémov najmenších štvorcov.

9 Metóda singulárneho rozkladu SVD je založená na nasledujúcej teoréme lineárnej algebry: Každá matica A typu M x N, ktorej počet riadkov M je väčší alebo rovný počtu stĺpcov N, môže byť zapísaná ako súčin stĺpcovo-ortogonálnej matice U typu M x N, diagonálnej matice W typu N x N s kladnými alebo nulovými prvkami (singulárnymi hodnotami) a transponovanej ortogonálnej matice V typu N x N.

10 Metóda singulárneho rozkladu Ortogonálnosť matíc U a V môžeme zapísať nasledovne

11 Metóda singulárneho rozkladu SVD dekompozícia môže byť vykonaná aj keď M < N. V takom prípade singulárne hodnoty w j sú všetky nulové pre j = M+1,, N ako aj odpovedajúce stĺpce matice U. Existuje viacero algoritmov na SVD, osvedčená je subroutina svdcmp z Numerical Recipes.

12 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

13 Metóda singulárneho rozkladu štvorcovej matice Aj je matica A štvorcová, povedzme typu N x N, potom U, W a V sú všetko štvorcové matice typu N x N. Keďže U a V sú ortogonálne, ich inverzné matice sú rovné ich transponovaným maticiam. Potom môžeme písať vzťah pre inverznú maticu A A 1 diag 1/ T V U w j SVD dáva jasnú diagnostiku situácie, ak sú niektoré singulárne hodnoty nulové alebo blízke nule.

14 Metóda singulárneho rozkladu štvorcovej matice Norma matice A A max Ax max UwV x x 1 x 1 T

15 Metóda singulárneho rozkladu štvorcovej matice Norma matice A A max Ax max UwV x x 1 x 1 keďže pre Euklidovskú normu platí, že T T U Ux Ux

16 Metóda singulárneho rozkladu štvorcovej matice Norma matice A A max Ax max UwV x x 1 x 1 keďže pre Euklidovskú normu platí, že T T U Ux Ux T potom A max wv x max wy max x 1 y 1 w j

17 Metóda singulárneho rozkladu štvorcovej matice Norma matice A A max A x max Vw U x x 1 x 1 T

18 Metóda singulárneho rozkladu štvorcovej matice Norma matice A A max A x max Vw U x x 1 x 1 podobne potom 1 1 T 1 A max w U x max w y min x 1 y 1 T w 1 j

19 Metóda singulárneho rozkladu štvorcovej matice Pripomeňme jednu z definícií čísla podmienenosti matice κ(a): κ A : A A 1 max min w w j j Matica je singulárna ak je jej číslo podmienenosti nekonečno. Matica je zle podmienená ak prevrátená hodnota jej čísla podmienenosti je blízka strojovej presnosti počítača, t.j. menšia než 10-6 pre jednoduchú presnosť alebo pre dvojnásobnú presnosť.

20 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Najskôr sa pozrime na prípad homogénnej sústavy, t.j. prípad keď b=0. Inými slovami hľadáme nulový priestor A

21 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Najskôr sa pozrime na prípad homogénnej sústavy, t.j. prípad keď b=0. Inými slovami hľadáme nulový priestor A n : n T : null A x Ax 0 x UwV x 0 n T T : n T x U UwV x 0 x : wv x 0

22 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Najskôr sa pozrime na prípad homogénnej sústavy, t.j. prípad keď b=0. SVD dáva priamo riešenie každý stĺpec matice V, ktorého zodpovedajúca singulárna hodnota w j je nulová je riešením.

23 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Teraz sa pozrime aký je rozsah (range) matice A

24 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Teraz sa pozrime aký je rozsah (range) matice A : n T : n : n range A Ax x UwV x x Uwy y T y V x

25 Metóda singulárneho rozkladu štvorcovej matice Prípad sústavy lineárnych rovníc Ax b v ktorej matica A je singulárna:, Teraz sa pozrime aký je rozsah (range) matice A Range matice A je tvorený obalom (span) stĺpcov matice U, ktorých zodpovedajúca singulárna hodnota w j je nenulová.

26 Metóda singulárneho rozkladu štvorcovej matice Hľadané riešenie systému s nenulovou pravou stranou pomocou SVD nájdeme nasledovne: nahradíme 1/w j nulou ak w j =0 potom počítame (sprava doľava) x V diag 1/ U b T w j Ak partikulárne riešenie leží v rozsahu (range) A, 2 potom má najmenšiu veľkosť x. Ak partikulárne riešenie neleží v rozsahu (range) A, r : Ax b potom x minimalizuje rezíduum riešenia.

27 Metóda singulárneho rozkladu štvorcovej matice Matica A nie je singulárna

28 Metóda singulárneho rozkladu štvorcovej matice Matica A je singulárna

29 Metóda singulárneho rozkladu štvorcovej matice Doteraz sme uvažovali len o krajných prípadoch a to že matica sústavy je alebo nie je singulárna. Numericky je častý prípad, že singulárne hodnoty w j sú veľmi malé, no nenulové, takže matica je zle podmienená. V takom prípade môžu priame metódy poskytnúť formálne riešenie, ale vektor riešenia má nezmyselne veľké prvky, ktoré pri algebraickom krátení počas násobení maticou A dajú veľmi zlú aproximáciu vektora pravej strany. Vtedy je často lepšie malé hodnoty w j vynulovať a riešenie určiť podľa vzorca (s tým, že 1/w j nahradíme nulou ak w j =0) x diag 1/ T V w j U b Je nutné byť ale opatrný a dobre zvoliť prahovú hodnotu nulovania veličín w j

30 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

31 Metóda singulárneho rozkladu pre menej rovníc ako neznámych Ak máme menej rovníc ako neznámych neočakávame jediné riešenie. Obyčajne existuje celý N - M rozmerný priestor riešení, ktorý chceme nájsť. SVD dá v takomto prípade N - M nulových alebo zanedbateľne malých hodnôt w j. Ak niektoré z M rovníc degeerujú, môžeme získať ďalšie nulové w j. Potom tie stĺpce matice V, ktorých zodpovedajúca singulárna hodnota w j je nulová tvoria bázové vektory hľadaného priestoru riešení. Partikulárne riešenie nájdeme aplikovaním vzorca x V diag 1/ U b T w j

32 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

33 Metóda singulárneho rozkladu pre viac rovníc ako neznámych Ak máme viac rovníc ako neznámych hľadáme riešenie, v zmysle problému najmenších štvorcov. Riešime teda sústavu, zapísanú tabuľkovo nasledovne:

34 Metóda singulárneho rozkladu pre viac rovníc ako neznámych Po aplikácii SVD na maticu A dostaneme riešenie v tvare V tomto prípade nie je zvyčajne nutné nulovať hodnoty w j avšak neobvykle malé hodnoty indikujú, že dáta nie sú citlivé na niektoré parametre.

35 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

36 QR rozklad Podobne ako LU rozklad matice, existuje aj tzv. QR rozklad matice A = Q.R kde R je horná trojuholníková matica a Q je ortogonálna matica, teda platí Q T.Q = 1. Riešenie sústavy rovníc nájdeme riešením R.x = Q T.b QR rozklad vyžaduje asi 2-krát viac operácií ako LU rozklad, ale existujú špeciálne typy rovníc, v ktorých je výhodnejšie ho použiť.

37 Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc ako neznámych SVD pre viac rovníc ako neznámych 2. QR-rozklad 3. Literatúra

38 Literatúra

39 Literatúra

40 Literatúra

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

15. Matlab Lineárna algebra

15. Matlab Lineárna algebra 1 Portál pre odborné publikovanie ISSN 1338-0087 15. Matlab Lineárna algebra Blaho Michal MATLAB/Comsol 18.09.2009 Matlab pracuje s dátami vo forme vektorov a matíc. Základnej práci s vektormi a maticami

Διαβάστε περισσότερα

Riešenie sústavy lineárnych rovníc. Priame metódy.

Riešenie sústavy lineárnych rovníc. Priame metódy. Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Úvod do lineárnej algebry

Úvod do lineárnej algebry Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

1.4 Rovnice, nerovnice a ich sústavy

1.4 Rovnice, nerovnice a ich sústavy 1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za

Διαβάστε περισσότερα

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA

NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA Stavebná fakulta Doc.Ing. Roman Vodička, PhD. RNDr. PavolPurcz, PhD.

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika

Numerické metódy, pravdepodobnosť a matematická štatistika Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Numerické metódy Učebný text pre bakalárske štúdium

Numerické metódy Učebný text pre bakalárske štúdium Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Faculty of Mathematics, Physics and Informatics Comenius University Bratislava. NumDif

Faculty of Mathematics, Physics and Informatics Comenius University Bratislava. NumDif Numerické riešenie diferenciálnych rovníc Jela Babušíková Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Klasifikácia diferenciálnych rovníc: obyčajné - počiatočná a okrajová

Διαβάστε περισσότερα

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Lineárne kódy Ján Karabáš KM FPV UMB Kódovanie ZS 13/14 J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Algebraické štruktúry Grupy Grupa je algebraická štruktúra G = (G;, 1, e), spolu s binárnou

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

Podmienenost problému a stabilita algoritmu

Podmienenost problému a stabilita algoritmu Podmienenost problému a stabilita algoritmu Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Podmienenost a stabilita 1/19 Obsah 1 Vektorové a

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Numerické metódy Zbierka úloh

Numerické metódy Zbierka úloh Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti: Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Matematická analýza pre fyzikov IV.

Matematická analýza pre fyzikov IV. 119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie

p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie 1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje

Διαβάστε περισσότερα

Goniometrické rovnice riešené substitúciou

Goniometrické rovnice riešené substitúciou Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy

Διαβάστε περισσότερα

Základné vzťahy medzi hodnotami goniometrických funkcií

Základné vzťahy medzi hodnotami goniometrických funkcií Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Nelineárne optimalizačné modely a metódy

Nelineárne optimalizačné modely a metódy Nelineárne optimalizačné modely a metódy Téma prednášky č. 8 Metódy transformujúce úlohu naviazaný extrém na úlohu na voľný extrém Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie

Διαβάστε περισσότερα

1 Úvod Sylabyaliteratúra Základnéoznačenia... 3

1 Úvod Sylabyaliteratúra Základnéoznačenia... 3 Obsah 1 Úvod 3 1.1 Sylabyaliteratúra.... 3 1.2 Základnéoznačenia.... 3 2 Množiny a zobrazenia 4 2.1 Dôkazy... 4 2.1.1 Základnétypydôkazov... 4 2.1.2 Matematickáindukcia... 4 2.1.3 Drobnéradyakodokazovať....

Διαβάστε περισσότερα

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2 NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

Riadenie zásobníkov kvapaliny

Riadenie zásobníkov kvapaliny Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory

Διαβάστε περισσότερα

Metódy numerickej matematiky I

Metódy numerickej matematiky I Úvodná prednáška Metódy numerickej matematiky I Prednášky: Doc. Mgr. Jozef Kristek, PhD. F1-207 Úvodná prednáška OBSAH 1. Úvod, sylabus, priebeh, hodnotenie 2. Zdroje a typy chýb 3. Definície chýb 4. Zaokrúhľovanie,

Διαβάστε περισσότερα

Vzorové riešenia 3. kola zimnej série 2014/2015

Vzorové riešenia 3. kola zimnej série 2014/2015 riesky@riesky.sk Riešky matematický korešpondenčný seminár Vzorové riešenia. kola zimnej série 04/05 Príklad č. (opravovali Tete, Zuzka): Riešenie: Keďže číslo má byť deliteľné piatimi, musí končiť cifrou

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Diferenciálne rovnice

Diferenciálne rovnice Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované

Διαβάστε περισσότερα

BANACHOVE A HILBERTOVE PRIESTORY

BANACHOVE A HILBERTOVE PRIESTORY BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Metoda hlavních komponent a její aplikace

Metoda hlavních komponent a její aplikace Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Mária Dubová Metoda hlavních komponent a její aplikace Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce:

Διαβάστε περισσότερα

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Spriahnute oscilatory

Spriahnute oscilatory Spriahnute oscilatory Juraj Tekel 1 Tema spriahnutych oscilatorov je na strednej skole vacsinou vynechana. Je vsak velmi zaujimava a velmi dolezita. Ide o situaciu, ked sa sustava sklada z viacerych telies,

Διαβάστε περισσότερα

Elektromagnetické pole

Elektromagnetické pole Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy.

Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. OBRAZOVÉ TRANSFORMÁCIE Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. Fourierova transformácia Jednorozmerný spojitý prípad Nech f(x je spojitá funkcia reálnej premennej

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom

Διαβάστε περισσότερα

Analýza údajov. W bozóny.

Analýza údajov. W bozóny. Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

STREDOŠKOLSKÁ MATEMATIKA

STREDOŠKOLSKÁ MATEMATIKA TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA MATEMATIKY A TEORETICKEJ INFORMATIKY STREDOŠKOLSKÁ MATEMATIKA pre študentov FEI TU v Košiciach Ján BUŠA Štefan SCHRÖTTER Košice

Διαβάστε περισσότερα

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)

Διαβάστε περισσότερα