ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ"

Transcript

1

2 ΥΜΝΑΣΙΟ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα του Θαλή. Β. Στο διπλανό σχήμα ισχύει ότι είναι ε 1 // ε // ε 3. Να γράψετε τους ίσους λόγους που προκύπτουν σύμφωνα με το θεώρημα του Θαλή.. Πότε δύο πολύγωνα είναι όμοια; Να αποδείξετε την παρακάτω ισότητα: ( 1) ( + ) ( 1) (4 3) + ( 1) = ( ) Άσκηση η Να λυθεί η εξίσωση: ε 1 ε ε 3 Z δ 1 δ = 0 ίνεται ισόπλευρο τρίγωνο ΑΒ. Στην πλευρά Β παίρνουμε τμήμα Β, στην πλευρά Α παίρνουμε τμήμα Ε και στην πλευρά ΑΒ Z παίρνουμε τμήμα ΑΖ, ώστε Β = Ε = ΑΖ. Να δείξετε ότι: Α. Τρίγωνο ΒΖ = Τρίγωνο Ε Β. Ζ = Ε.

3 ΥΜΝΑΣΙΟ Α. Πότε λέμε ότι δύο τρίγωνα είναι ίσα; (ορισμός) Β. ράψτε τα κριτήρια ισότητας δύο τριγώνων. Είναι τα ΑΒ και ΕΖ ίσα; (δικαιολογήστε την απάντηση σας) Ε Ζ Θέμα ο Α. Να συμπληρώσετε τις ταυτότητες: α. (α + β) =. β. (α β) 3 =. γ. (α + β)(α β) =.. Β. Να αποδείξετε την ταυτότητα: α 3 β 3 = (α β)(α + αβ + β ). Να παραγοντοποιηθούν οι παραστάσεις: 16 και Β. Να βρεθεί το Ε. Κ. Π. των παραστάσεων: ( 16), ( 5 + 4), (4 ). Να λυθεί η εξίσωση: = Άσκηση η Να λυθεί το σύστημα: (y + ) 3(y 3) = y y = y Να αποδείξετε ότι: εφ 54 συν 54 + συν 16 =1

4 ΥΜΝΑΣΙΟ Α. Τι ονομάζεται μονώνυμο, από ποια μέρη αποτελείται, τι λέγεται βαθμός του μονωνύμου και πότε δύο μονώνυμα λέγονται όμοια; (Να δώσετε παραδείγματα). Β. Να συμπληρώσετε τις παρακάτω ισότητες: α. (α β) = β. (α + β) 3 = γ. α β = δ. α 3 + β 3 =. Να αποδείξετε τη δ. Θέμα ο Α. Σε ορθοκανονικό σύστημα αξόνων να ορίσετε τους τριγωνομετρικούς αριθμούς γωνίας ω με 0 ω 180. (Να κάνετε σχήμα) Β. Να συμπληρώσετε τις παρακάτω ισότητες: α. ημ90 = β. συν180 = γ. εφ0 = δ. ημ60 = ε. συν45 = στ. εφ30 = ζ. ημ150 = η. συν135 = θ. εφ10 = Στο διπλανό σχήμα είναι ΑΒ = 5cm, Α = 1cm, = 6cm. Α. Να αποδείξετε ότι τα τρίγωνα Ε και ΑΒ είναι όμοια. Β. Να υπολογίσετε τα, y και να y 1cm 5cm βρείτε το λόγο ομοιότητάς τους.. Να βρείτε το λόγο των εμβαδών 6cm των δύο τριγώνων. Άσκηση η 3 + y + 4y = + y + 6 Να λύσετε το σύστημα: + y + 5 = 3 Να ερμηνεύσετε γεωμετρικά το αποτέλεσμα που βρήκατε. Να λύσετε την εξίσωση: = 3

5 ΥΜΝΑΣΙΟ Α. Τι γνωρίζετε για τη συνάρτηση y = α με α 0; (σχήμα) Β. Έστω η συνάρτηση y = α + β + γ, α 0. Τι παριστάνει; Θέμα ο Ποιες οι συντεταγμένες της κορυφής της; Πότε έχει ελάχιστο, πότε μέγιστο και ποιο είναι αυτό; Α. Να διατυπωθεί το Θεώρημα του Θαλή και σε σχήμα να γραφούν οι σχέσεις που το εκφράζουν. Β. Σε δύο τρίγωνα ΑΒ και Α Β έχουμε: α. α = α, β = β, Β = Β β. α = α, =, Β = Β γ. α = α, β = β, = δ. Α = Α, Β = Β, = Σε ποιες περιπτώσεις τα τρίγωνα είναι ίσα και γιατί; Α = ( 3 + 1) 1 = 3 + Α. Να παραγοντοποιηθούν οι Α, Β. Β. ια ποιες τιμές του έχει νόημα η παράσταση Α Β και κατόπιν να απλοποιηθεί.. Να λυθεί η εξίσωση Α Β = 1 Άσκηση η Έστω το σύστημα: + 3y = 3α + β y = α + β Να προσδιοριστούν τα α, β αν το (Σ) έχει λύση (, y) = (,3). Σε ισοσκελές τρίγωνο ΑΒ προεκτείνω τη βάση Β και από τις δύο μεριές και παίρνω τμήματα Β = Ε. Αν Μ, Ν είναι τα μέσα των ΑΒ και Α αντίστοιχα, να δειχθεί ότι Ν = ΜΕ. Αν η Ν και η ΜΕ τέμνονται στο Κ και φέρω την ΚΖ κάθετη στην Ε, να δειχθεί ότι: το Ζ είναι μέσον της Ε.

6 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: α. (α + β) = 94 β. (α + β) (α β) =.. γ. (α β) 3 =.. δ. (α β) (α + αβ + β ) =.. Β. Να αποδείξετε την πρώτη και την τέταρτη ταυτότητα. Θέμα ο ίνεται η εξίσωση α + β + γ = 0 με α 0. Να γράψετε τον τύπο της διακρίνουσας = α. Πότε η εξίσωση έχει δύο άνισες λύσεις; ράψτε τον τύπο των λύσεων. β. Πότε η εξίσωση έχει μια διπλή λύση; ράψτε τον τύπο της. γ. Πότε η εξίσωση είναι αδύνατη; Να λύσετε την εξίσωση: = + Άσκηση η Να λύσετε το σύστημα: +1 y = y = 6 ίνεται ισοσκελές τρίγωνο ΑΒ με ΑΒ = Α. Από το μέσο Μ της βάσης Β, φέρνουμε τα τμήματα Μ ΑΒ και ΜΕ Α. Να αποδείξετε ότι: Α. Μ = ΜΕ Β. Το τρίγωνο ΑΕ είναι ισοσκελές.

7 ΥΜΝΑΣΙΟ Α. Να αποδειχτεί η ταυτότητα: (α + β) 3 = α α β + 3αβ + β 3. Β. Να συμπληρωθούν οι ταυτότητες: α. α αβ + β =. β. α 3 β 3 = 95 γ. (α β) (α + β) =. δ. (α + β) (α αβ + β ) = Θέμα ο Α. Να γράψετε τα κριτήρια ισότητας τριγώνων. Β. Να γράψετε τα κριτήρια ισότητας ορθογωνίων τριγώνων. Να λυθεί η εξίσωση: 9( + ) 18( + 3) = ( 1). Άσκηση η Αν για μία γωνία ω δίνεται 90 ω 180 και ημω =, να υπολογιστούν το συνω και η 3 εφω. + 6 = y Να λυθεί το σύστημα: y y + = 4 3

8 ΥΜΝΑΣΙΟ Α. Να αποδείξετε την ταυτότητα (α β) = α αβ + β. Β. Τι λέγεται παραγοντοποίηση;. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες. α. Ισχύει (α + β) = α + β. β. Η εξίσωση α + β + γ = 0 με α 0 έχει δύο άνισες ρίζες αν = 0. γ. Το πολυώνυμο P() = 010 είναι μηδενικού βαθμού. δ. Η εξίσωση 5 = 0 είναι αδύνατη. ε. Κλασματική λέγεται κάθε εξίσωση που περιέχει ένα τουλάχιστον κλάσμα. Θέμα ο Α. Να γράψετε τα κριτήρια ισότητας τριγώνων. Β. Να γράψετε τα κριτήρια ισότητας ορθογωνίων τριγώνων.. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες. α. Αν δύο τρίγωνα έχουν τις γωνίες τους μία προς μία ίσες, τότε είναι ίσα. β. Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και μια γωνία ίση, τότε είναι ίσα. γ. Το ευθύγραμμο τμήμα που συνδέει τα μέσα δύο πλευρών ενός τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της. Α. Να λύσετε την εξίσωση: = 0.. Αν η πιθανότητα Ρ(Α) ενός ενδεχομένου Α είναι ρίζα της παραπάνω εξίσωσης να υπολογιστεί η Ρ(Α ). Αν ακόμη δίνονται Ρ(Β) = 1 και Ρ(Α Β) = 1 να υπολογίσετε την Ρ(Α Β). 6 Άσκηση η Αν για την αμβλεία γωνία ω ισχύει ημω = 1 να υπολογίσετε: 13 13συνω συν10 Α. το συνω, Β. την εφω,. την τιμή της παράστασης Α = 5εφω Α. Να λύσετε το σύστημα: 5y = 5 + y = 54. Να υπολογίσετε την τιμή της παράστασης: Κ = y y όπου (, y) η λύση του συστήματος του ερωτήματος Α.

9 ΥΜΝΑΣΙΟ Α. Να χαρακτηρίσετε τις ακόλουθες προτάσεις γράφοντας στην κόλλα σας την ένδειξη Σωστή ή Λάθος δίπλα στον αριθμό της κάθε ερώτησης. α. ύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα. β. Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και την περιεχόμενη γωνία τους ίση, τότε είναι ίσα. γ. ύο τρίγωνα είναι ίσα όταν δύο γωνίες και δύο πλευρές τους είναι ίσες μία προς μία. Β. α. Να διατυπώσετε το θεώρημα του Θαλή. β. Αν είναι ε 1 // ε // ε 3 και τέμνουν τις ευθείες δ 1, δ στα σημεία Α, Β,, και Α, Β,, αντίστοιχα γράψτε την επόμενη ισότητα ορθά συμπληρωμένη: ΑΒ... = = Θέμα ο Α. Να αντιστοιχίσετε τις ταυτότητες της στήλης Α με τα αντίστοιχα αναπτύγματα της στήλης Β. Η αντιστοίχηση να γραφτεί στην κόλλα σας, γράφοντας δίπλα στο γράμμα της στήλης Α τον αριθμό που αντιστοιχεί στη στήλη Β, ως εξής: Α, Β,, ΣΤΗΛΗ Α Α. (α + β) 3 Β. (α + β)(α β). (α β). α 3 β 3 Β. Να αποδείξετε ότι (α + β) = α + αβ + β ΣΤΗΛΗ Β 1. (α + β)(α αβ + β ). α αβ + β 3. α 3 + β 3 4. α β 5. α 3 + 3α β + 3αβ + β 3 6. (α β)(α + αβ + β ) 3 Έστω γωνία ω με 0 ω 180, για την οποία ισχύει συνω =. 5 Α. Η γωνία ω είναι οξεία ή αμβλεία; Να δικαιολογήσετε την απάντησή σας. Β. Να αποδείξετε ότι: α. ημω = 4 4 β. εφω = 5 3 εφω συν10. Να υπολογίσετε την τιμή της παράστασης: ημω εφ135. Άσκηση η ίνονται οι παραστάσεις: Α = ( + ) + 4( + 5) και Β = 1 : Α. Να αποδείξετε ότι: Α = 16. Να αποδείξετε ότι: Β = 6. Να λύσετε την εξίσωση: Α + Β = 0. ( + 3)( 1) y = + 1 ίνεται το ακόλουθο σύστημα: (y ) = y + 0 y = 4. Να αποδείξετε ότι μετά από πράξεις γράφεται στη μορφή: + 4y = 4 Β. Να λύσετε το σύστημα στη νέα μορφή.

10 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: (α β) =. και (α + β)(α αβ + β ) = Β. Να αποδείξετε την ταυτότητα: (α β) 3 = α 3 3α β + 3αβ β 3 Θέμα ο Α. Ποια είναι τα κύρια στοιχεία ενός τριγώνου και ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου; Β. Να διατυπώσετε τα κριτήρια ισότητας δύο τριγώνων. Να λύσετε την εξίσωση: = Άσκηση η y 4 5 = Να λύσετε το σύστημα: 3 6 y = 3 Στο διπλανό σχήμα τα τρίγωνα ΑΒ και Ε είναι ορθογώνια με Α = 90 και Ε = 90. Επίσης δίνονται ΑΒ = 9cm, Ε = 3cm, Ε = 5cm, ΑΕ = και = 3. Α. Να αποδείξετε ότι τα τρίγωνα ΑΒ και Ε είναι όμοια. Β. Να υπολογίσετε το.. Να υπολογίσετε την πλευρά Β του τριγώνου ΑΒ. 9cm 3cm 5cm -3cm

11 ΥΜΝΑΣΙΟ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: = Άσκηση η (5 + 3y) 5 ( y) = Να λυθεί το σύστημα: 4 3y = 5 8y + 1 Στο διπλανό σχήμα ισχύουν ΑΒ = ΑΕ, ΑΕ = ΑΒ και ΑΒ = 6cm, Α = 10cm, Β = 1cm, Α = 4cm. α. Να αποδείξετε ότι τα τρίγωνα ΑΒ και ΑΕ είναι όμοια. β. Να γραφούν οι ίσοι λόγοι των αντίστοιχων πλευρών. γ. Να υπολογιστούν τα ΑΕ και Ε.

12 ΥΜΝΑΣΙΟ Α. Να ορίσετε τους τριγωνομετρικούς αριθμούς γωνίας ω με 0 ω 180. Β. Να αποδείξετε ότι για οποιαδήποτε γωνία ω ισχύουν: α. ημ ω + συν ω = 1 β. εφω = ημω συνω Θέμα ο Α. Ποια είναι η γενική μορφή μιας εξίσωσης ου βαθμού με έναν άγνωστο; Β. Ποια παράσταση ονομάζουμε διακρίνουσα;. Να αντιστοιχίσετε τα ερωτήματα της στήλης (Α) με τις απαντήσεις της στήλης (Β) στον παρακάτω πίνακα γνωρίζοντας ότι αναφέρονται σε εξίσωση ου βαθμού: Στήλη Α ιακρίνουσα Α. > 0 Β. < 0. = 0 Στήλη Β Λύσεις εξίσωσης α. ιπλή λύση β. Αόριστη γ. Αδύνατη δ. ύο λύσεις άνισες Μία απάντηση της στήλης (Β) περισσεύει. ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α) και ένα σημείο Ο στο εσωτερικό του τριγώνου τέτοιο ώστε να ισχύει ΟΒ = Ο. Να αποδειχθούν ότι: Α. ΟΒ = ΟΒ Β. ΑΒΟ = ΑΟ. Τα τρίγωνα ΑΒΟ και ΑΟ είναι ίσα μεταξύ τους. Άσκηση η Να λυθεί η εξίσωση: = 0 ( + 1) + (y ) = ( 3) + (y + 1) Να λυθεί το σύστημα: + y = 1

13 ΥΜΝΑΣΙΟ Να αποδείξετε τις αξιοσημείωτες ταυτότητες: (α β) = α αβ + β (α + β) 3 = α 3 + 3α β + 3αβ + β 3 Θέμα ο Να αποδείξετε ότι: ημ ω + συν ω = 1 (Να γίνει σχήμα) 1 Να γίνουν οι πράξεις: α β Άσκηση η 1 + α + αβ 1 α αβ Να λυθεί το σύστημα: 3 y = y 3 = 4 6 Στο διπλανό σχήμα (σκαρίφημα) να 3 βρεθεί το αν είναι γνωστό ότι ισχύει Ε // Β. +1

14 ΥΜΝΑΣΙΟ Α. Τι λέγεται μονώνυμο και από τι αποτελείται; ώστε ένα παράδειγμα μονωνύμου στο οποίο και να αναφέρετε από τι αποτελείται. Β. Πότε δύο μονώνυμα λέγονται όμοια; ώστε ένα παράδειγμα.. Να βρείτε τους φυσικούς αριθμούς λ, μ ώστε η αλγεβρική παράσταση Θέμα ο λ y μ +3 y να είναι μονώνυμο. Α. Τι ονομάζεται ταυτότητα; Β. Να αποδείξετε την ταυτότητα (α β) = α αβ + β. Να συμπληρώσετε τις ταυτότητες: (α + β)(α β) = (α β) 3 = α 3 + β 3 = ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α) και η διχοτόμος του Α. Έστω Μ τυχαίο σημείο της Α. Να αποδείξετε ότι το τρίγωνο ΜΒ είναι ισοσκελές. Άσκηση η Α. Αν 1< α < και 1< β < 5, να συμπληρώσετε τα κενά...< 3α <,.. < β <,..< 3α β < (Να δικαιολογήσετε τις απαντήσεις σας). Β. Να βρείτε τις κοινές λύσεις των ανισώσεων: + 5 < και +1 > + 3 Να εξετάσετε αν έχουν κοινή λύση οι εξισώσεις: = 0 και = 4.

15 ΥΜΝΑΣΙΟ Α. Να διατυπώσετε το θεώρημα που αναφέρεται σε ίσα τμήματα μεταξύ παράλληλων ευθειών. Β. Να αποδείξετε ότι αν από το μέσο μιας πλευράς ενός τριγώνου φέρουμε ευθεία παράλληλη προς μία άλλη πλευρά του, τότε αυτή διέρχεται από το μέσο της τρίτης πλευράς του.. Να γράψετε τα κριτήρια ισότητας δύο ορθογωνίων τριγώνων. Θέμα ο Α. Να αποδείξετε τη σχέση ημ ω + συν ω = 1 (να γίνει σχήμα). Β. Ο τύπος εφω = ημω ισχύει για τις γωνίες των 0, 90 και 180 ; Να δικαιολογήσετε την συνω απάντησή σας.. Να γράψετε τους τύπους που συνδέουν τους τριγωνομετρικούς αριθμούς δύο παραπληρωματικών γωνιών. Α. Να απλοποιήσετε τα κλάσματα: Α = και Β = 8 και στη συνέχεια να λύσετε την εξίσωση Α Β =1. Άσκηση η Στο διπλανό ορθογώνιο τρίγωνο ΑΒ ( Α = 90 ) φέρ- νουμε το ύψος ΑΚ προς την υποτείνουσα. Από το Κ Κ φέρνουμε την ΚΛ κάθετη στην ΑΒ. Να αποδείξετε: Α. ότι τα τρίγωνα ΑΚ, ΑΚΛ είναι όμοια και Β. ότι ΑΚ = Α ΚΛ. Λ Η γραφική παράσταση της συνάρτησης y = α + β + 3 διέρχεται από τα σημεία 1 7 Α(, 5) και Β,. Να βρείτε τα α, β και στη συνέχεια για α = 1 και β = να 4 βρείτε τις συντεταγμένες των σημείων τομής της παραπάνω συνάρτησης με τους άξονες και y y (υπολογιστικά).

16 ΥΜΝΑΣΙΟ Α. Να δώσετε τον ορισμό της ταυτότητας. Β. Να συμπληρώσετε και στη συνέχεια να αποδείξετε την ταυτότητα: (α + β) 3 =... Να χαρακτηρίσετε σωστές (Σ) ή λανθασμένες (Λ) τις παρακάτω σχέσεις: α. (α β) = (β α) β. ( α β) = (α + β) γ. α β = (α + β)(β α) Θέμα ο Α. Με τη βοήθεια κατάλληλου σχήματος να ορίσετε τους τριγωνομετρικούς αριθμούς μιας αμβλείας γωνίας ω. Β. Να συμπληρώσετε τις ισότητες: ημ180 =.. συν(180 ω) = εφ90 =... Να χαρακτηρίσετε σωστές (Σ) ή λανθασμένες (Λ) τις σχέσεις: α. ημ ω = 1 + συν ω β. αν ω = 110 τότε συνω >0 Α. Να απλοποιήσετε τις παραστάσεις: Α = ( ) και Β = 8 Β. Να λύσετε την εξίσωση: Β Α = 0 Άσκηση η ίνεται το πολυώνυμο 3 + α + β 6. Να βρείτε τα α, β αν η αριθμητική τιμή του για = 1είναι 0 και για = 3 είναι Στο διπλανό σχήμα είναι Ε // Β. Α. Να αποδείξετε ότι τα τρίγωνα ΑΕ και ΑΒ είναι όμοια. 6 Β. Να υπολογίσετε το μήκος.

17 ΥΜΝΑΣΙΟ Α. ια κάθε πραγματικό αριθμό α και β να δείξετε ότι: (α β) = α αβ + β Β. Να συμπληρώσετε τα αναπτύγματα των ταυτοτήτων: (α + β) =. (α β) 3 = (α β)(α + αβ + β ) = Θέμα ο Α. Στο διπλανό σχήμα δίνεται σημείο Μ(, y) y τέτοιο ώστε να είναι OM = ωκαι ΟΜ = ρ. Να ορίσετε τους τριγωνομετρικούς αριθ- M(, y) ρ ω μούς της γωνίας ω συναρτήσει των συντεταγμένων του σημείου Μ και να γρά- y ψετε τη σχέση του ρ με τις συντεταγμένες του σημείου Μ. Β. Να αποδείξετε ότι για κάθε γωνία ω ισχύει η ισότητα: ημ ω + συν ω = 1 Να λύσετε την εξίσωση: 3 + Άσκηση η = Να λύσετε το σύστημα: (y +1) 1 = y + 8 = ( y) Στο ισοσκελές τρίγωνο ΑΒ το σημείο Μ είναι μέσο της βάσης Β. Αν είναι Β = Ε, να αποδείξετε ότι: Α. το τρίγωνο ΜΕ είναι ισοσκελές Β. τα τρίγωνα ΑΜ και ΑΕΜ είναι ίσα. M

18 ΥΜΝΑΣΙΟ Α. Να αποδείξετε ότι: (α + β) = α + αβ + β Β. Να αντιστοιχίσετε τα στοιχεία της 1 ης στήλης με τα στοιχεία της ης : 1 η Στήλη η Στήλη 1. (α + β). (α β) 3. (α + β) 3 4. α β 5. (α β) 3 Α. α αβ + β Β. (α β)(α + β). α 3 3 α β + 3αβ β 3. α + αβ + β Ε. α 3 + 3α β + 3αβ + β 3 Θέμα ο Α. Να διατυπώσετε το Θεώρημα του Θαλή. Β. Να γίνει σχήμα και να γραφτούν οι αντίστοιχες σχέσεις. Στο ισοσκελές τρίγωνο ΑΒ του διπλανού σχήματος το σημείο Μ είναι μέσο της βάσης Β. Αν είναι Β = Ε να αποδείξετε ότι Μ = ΜΕ. Άσκηση η M Να λύσετε την εξίσωση: = ( +1) 9 y = 6 Να λύσετε το σύστημα: 3 y = 14 4

19 ΥΜΝΑΣΙΟ Α. Τι είναι μονώνυμο, ποια τα μέρη του και πότε δύο μονώνυμα λέγονται όμοια; Να δώσετε παράδειγμα. Β. Να βρεθεί και να αποδειχθεί το ανάπτυγμα στις παρακάτω δύο ταυτότητες: Θέμα ο (α + β) και (α + β) 3 Να διατυπώσετε τα κριτήρια ισότητας τριγώνου καθώς και τα κριτήρια ισότητας ορθογωνίων τριγώνων. ( 1) + 3y = 3 Να λυθεί το σύστημα: 3 5(y 1) = 6 Άσκηση η Α. Να παραγοντοποιήσετε τις παραστάσεις: α. + β. 3 6 γ. Β. Να λύσετε την εξίσωση: = 3 6 Σε τρίγωνο ΑΒ φέρνουμε τo τμήμα Ε παράλληλο στη Β. Αν είναι ΑΕ =, Α = 30, Β = 18 και Ε = 4 να υπολογίσετε τα ευθύγραμμα τμήματα Α και Ε

20 ΥΜΝΑΣΙΟ Α. Να διατυπώσετε το νόμο των Ημιτόνων, Συνημιτόνων σε ένα τρίγωνο. Β. Σε τρίγωνο ΕΖ να εκφράσετε την πλευρά ΕΖ με το νόμο των Συνημιτόνων και μετά να επιλύσετε τον παραπάνω τύπο ως προς το συνημίτονο της γωνίας. Θέμα ο ίνεται η εξίσωση α + β + γ = 0 με α 0 Α. Να γράψετε τους τύπους που μας δίνουν τη ιακρίνουσα και τις λύσεις της εξίσωσης. Β. ια τις διάφορες τιμές της ιακρίνουσας να διακρίνετε το πλήθος των ριζών της εξίσωσης. Στο παρακάτω σχήμα είναι: ΑΒ = 3, Α = 3+, Α = 60, = 30 και Β = Α. Να αποδείξετε ότι Β = 3 Β. Να υπολογίσετε τη Β. Άσκηση η ίνονται οι παραστάσεις: Α = 4 = = Α. Να παραγοντοποιηθούν οι παραπάνω παραστάσεις. 30 Β. Να λυθεί η εξίσωση: 1 Α + 1 Β + 1 = 0 Σε τρίγωνο ΑΒ φέρνουμε τη διχοτόμο Α της γωνίας Α και από την κορυφή Β φέρνουμε τη ΒΚ κάθετο στη διχοτόμο Α η οποία τέμνει την Α στο Ε. Α. Να αποδειχθεί ότι το τρίγωνο ΑΒΕ είναι K ισοσκελές. Β. Να αποδειχθεί ότι το τρίγωνο ΒΕ είναι ισοσκελές.

21 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: (α β) = (α + β) 3 = 109 (α + β) (α β) = Β. Να αποδείξετε την τελευταία ταυτότητα. Θέμα ο Α. Πότε δύο τρίγωνα λέμε ότι είναι ίσα; Β. ιατυπώστε τα κριτήρια ισότητας τριγώνων. Σε κάθε περίπτωση να σχεδιάσετε το αντίστοιχο σχήμα. Να λυθεί το σύστημα: y 1 = 5 3( 1) (y 6) = 15. Άσκηση η Α. Να παραγοντοποιήσετε τα πολυώνυμα: 3 + 3, 1,.. Αφού αντικαταστήσετε τα πολυώνυμα που παραγοντοποιήσατε, να λύσετε την εξίσωση: =.. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α) είναι: το μέσο της ΑΒ, το Ε μέσο της Α και το Μ μέσο της Β. Να αποδείξετε ότι τα τρίγωνα ΒΜ και ΕΜ είναι ίσα.

22 ΥΜΝΑΣΙΟ Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες: Α. Το άθροισμα μονωνύμων είναι μονώνυμο. Β. Το γινόμενο μονωνύμων είναι μονώνυμο.. Το πηλίκο μονωνύμων είναι μονώνυμο.. Το μηδενικό μονώνυμο είναι μηδενικού βαθμού. Ε. Το σταθερό πολυώνυμο είναι μηδενικού βαθμού. ΣΤ. Το άθροισμα όμοιων μονωνύμων είναι μονώνυμο όμοιο μ αυτά. Θέμα ο Στο διπλανό σχήμα δίνεται σημείο Μ(, y) τέτοιο ώστε να είναι ΟΜ = ρ και ΧΟΜ = ω. Να αποδείξετε ότι: Α. ημ ω + συν ω = 1 και Β. εφω = ημω συνω. 10 Να λυθεί η εξίσωση: Άσκηση η + = O y ρ ω M(, y) + y y = Να λυθεί το σύστημα: 3 3 3( ) (y 1) = 1 ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α). Από το μέσο Μ της βάσης Β φέρνουμε τις κάθετες Μ ΑΒ και ΜΕ Α. Α. Να συγκρίνετε τα τρίγωνα ΒΜ και ΕΜ και να αποδείξετε ότι Μ = ΜΕ. M Β. Να αποδείξετε ότι το τρίγωνο ΑΕ είναι ισοσκελές.

23 ΥΜΝΑΣΙΟ Α. Να γράψετε τη γενική μορφή εξίσωσης ου βαθμού και τον τύπο που δίνονται οι λύσεις της. Β. Να εξετάσετε χωρίς να λυθούν, ποιες από τις παρακάτω εξισώσεις έχουν λύσεις Θέμα ο (και πόσες) και ποιες είναι αδύνατες: = 0, + 5 = 0, = 0. Α. Να διατυπώσετε το θεώρημα του Θαλή (σχήμα) Β. Στο διπλανό σχήμα ε 1 // ε // ε 3. Να συμπληρώσετε τις αναλογίες: ΑΒ Β =., Α ΑΒ =.., Β Α =. Να λύσετε την εξίσωση: Άσκηση η +1 ( + ) = δ 1 Z δ ε 1 ε ε 3 Να λυθεί το σύστημα: 5 y +1 = 3 3 ( + 4) 3(y 6) = 4 Αν συνω = 4 και 90 ω Α. Να υπολογίσετε τους άλλους τριγωνομετρικούς αριθμούς της γωνίας ω. Β. Να υπολογίσετε την τιμή της παράστασης: Β = 10συνω 8εφω + 5ημ(180 ω).

24 ΥΜΝΑΣΙΟ Α. Να διατυπώσετε το Θεώρημα του Θαλή (σχήμα αναλογία). Β. Αν Ε // Β ποιες από τις παρακάτω σχέσεις είναι Σωστές και ποιες Λάθος; α. β. γ. δ. Α Β = ΑΕ Ε Α ΑΒ = Α ΑΕ Β Ε = Α ΑΕ Β Ε = ΑΒ Α Θέμα ο Α. Να συμπληρώσετε τις ταυτότητες: (α β)(α + β) = (α β) 3 = α 3 + β 3 = Β. Να αποδείξετε την ταυτότητα: (α β) = α αβ + β Να λυθεί η εξίσωση: 1 + = 8 Άσκηση η ίνεται ισοσκελές τρίγωνο ΑΒ με ΑΒ = Α. Προεκτείνω τις πλευρές ΑΒ και Α προς το μέρος των Β και αντίστοιχα κατά ίσα τμήματα Β = Ε. Αν Μ είναι το μέσο της βάσης Β, να δείξετε ότι Μ = ΜΕ. Να λυθεί το σύστημα: 1 y 1 + = 3 6 ( 1) + 4y = 3y

25 ΥΜΝΑΣΙΟ Α. Τι λέγεται ταυτότητα; Β. Συμπληρώστε τις ισότητες: α. α 3 β 3 =.. β. α 3 + β 3 =.. γ. α β =. Αποδείξτε ότι: (α β) 3 = α 3 3α β + 3αβ β 3 Θέμα ο ιατυπώστε το Θεώρημα του Θαλή κάνοντας και το αντίστοιχο σχήμα. Στο σύνολο των πραγματικών αριθμών να λυθεί η εξίσωση: = 4 Άσκηση η Βρείτε τις πραγματικές τιμές των και y λύνοντας το σύστημα: 1 y + = 3 3 y = 11 Αν για την οξεία γωνία ω γνωρίζουμε ότι ημω = 3, υπολογίστε την τιμή της παράστασης: 5 10 ημω 5 συνω 1 εφω

26 ΥΜΝΑΣΙΟ Α. Να αποδειχθεί η ταυτότητα: (α β) = α αβ + β Β. Χαρακτηρίστε με σωστό (Σ) ή λάθος (Λ) τα παρακάτω: α. (κ λ) = κ κ( λ ) + ( λ ) β. ( κ)( + κ + 4κ ) = 3 8κ 3 γ. y 9 = (y 3)[y + ( 3 )] Θέμα ο cm Α. ιατυπώστε το Θεώρημα του Θαλή (κανόνας σχέση σχήμα). ε Β. Με τη βοήθεια του διπλανού σχήματος, αντιστοιχίστε τα στοιχεία της στήλης Α με αυτά της στήλης Β: Είναι ΑΒ // ε // ΑΜ =, Μ = 4. M 4cm ΣΤΗΛΗ Α α. ΒΜ Μ β. Μ Β γ. Β ΒΜ δ. ΒΜ Β ΣΤΗΛΗ Β Α. Λύστε την εξίσωση: ( ) = 3 Β. Παραγοντοποιήστε το τριώνυμο: 3. Αν 1 η μικρότερη λύση της (α) και η μεγαλύτερη, να αποδείξετε τη σχέση: 9( 1 ημω) + ( συνω) = 9 Άσκηση η Α. Να λύσετε το σύστημα εξισώσεων: (α + 3) (β 1) = 10 3(α 1) + (β + 3) = 11 Β. ια τις τιμές των α, β που βρήκατε στο (α) ερώτημα να λύσετε την εξίσωση: β +1 + α 1 β = 0 Με τη βοήθεια του διπλανού σχήματος: Α. να αναφέρετε το κριτήριο βάσει του οποίου τα τρίγωνα ΑΒ και Ε είναι ίσα 4 α Β. να βρείτε το μήκος α της πλευράς Ε. αν α = 4 να απλοποιήσετε την παράσταση Κ αφού πρώτα παραγοντοποιήσετε τον ( 5) + α + αριθμητή της : Κ =. 9 α β γ δ 3 3

27 ΥΜΝΑΣΙΟ Α. Πότε δύο ή περισσότερα μονώνυμα λέγονται όμοια; Β. Πότε δύο μονώνυμα λέγονται αντίθετα;. Τι λέγεται συντελεστής ενός μονωνύμου; Θέμα ο Α. Αν ω και 180 ω είναι παραπληρωματικές γωνίες, να χαρακτηρίσεις κάθε μία από τις παρακάτω ισότητες, με (Σ) αν είναι σωστές και με (Λ) αν είναι λανθασμένες: α. ημ(180 ω) = ημω β. συν(180 ω) = ημω γ. εφ(180 ω) = εφω Να λύσεις την εξίσωση: 7 + = 6 Άσκηση η Να παραγοντοποιήσεις το πολυώνυμο: ω = Στο τραπέζιο ΑΒ είναι: ΕΖ // ΑΒ //, ΑΕ = 6m, Ε = 10m, Β = 4m, ΒΖ = και Ζ = y. Να υπολογίσεις τα μήκη των τμημάτων και y. 6cm 10cm Z y

28 ΥΜΝΑΣΙΟ Α. Να αντιγράψετε και να συμπληρώσετε τις ταυτότητες: α. (α + β) =.. β. α 3 β 3 =.. γ. (α β)(α + β) = Β. Να αποδείξετε την ταυτότητα (α β) 3 = α 3 3α β + 3αβ β 3 Θέμα ο Α. Πότε δύο ορθογώνια τρίγωνα είναι ίσα; Β. Ποια είναι τα κύρια και ποια τα δευτερεύοντα στοιχεία ενός τυχαίου τριγώνου; Να λυθεί η εξίσωση: 1 + = 10 Άσκηση η ίδεται το σύστημα: α βy = 4 (α + 3) + (β + )y = 45 + Να βρείτε τους αριθμούς α και β ώστε το σύστημα να έχει λύση το ζεύγος: (, y) = (5, ) ίδεται το ισοσκελές τρίγωνο ΑΒ με (ΑΒ = Α). Προεκτείνουμε τη βάση Β κατά τμήματα Β = Ε, όπως φαίνεται στο παρακάτω σχήμα. Να αποδείξετε ότι: Α. το τρίγωνο ΑΒ είναι ίσο με το τρίγωνο ΑΕ Β. το τρίγωνο ΑΕ είναι ισοσκελές.

29 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ισότητες: α. (α β) =. β. (α β) 3 =. 117 γ. (α + β) (α β) =.. Β. Να αποδείξετε τη δεύτερη ισότητα. Θέμα ο Α. Να διατυπώσετε το θεώρημα του Θαλή (σχήμα) Β. ια δύο σημεία, Ε των πλευρών ΑΒ, Α αντιστοίχως ενός τριγώνου ΑΒ ισχύουν οι προτάσεις: α. Αν Ε // Β τότε β. Αν Α Β = ΑΕ Ε τότε Να συμπληρώσετε τις προτάσεις (σχήμα). Να λύσετε την εξίσωση: ( 1) ( + ) = ( + )( ) + (5 ) Άσκηση η Να λύσετε το σύστημα: ( 3y) (3 5y) = 1 3( ) (y +1) = 4 ίνεται ορθογώνιο τρίγωνο ΑΒ( Α = 90 ) και Α το ύψος του. Να αποδείξετε ότι τα τρίγωνα ΑΒ και Α είναι όμοια. Αν Α = 4 cm και Β = 5 cm, να υπολογίσετε το μήκος του τμήματος.

30 ΥΜΝΑΣΙΟ Α. Να ορίσετε τους τριγωνομετρικούς αριθμούς της γωνίας ω σε ορθογώνιο σύστημα αξόνων. Β. Να αποδείξετε ότι: ημω + συνω =1. Θέμα ο Α. Συμπληρώστε την ισότητα (α β) = Β. Συμπληρώστε την ισότητα (α β)(α + αβ + β ) =. Να αποδείξετε ότι (α + β) 3 = α 3 + 3α β + 3αβ + β 3 Να λυθεί το σύστημα: Άσκηση η 1 y 1 + = 3 3 y = 3 3 Να παραγοντοποιηθούν οι παραστάσεις: Α = και Β = 3. Να απλοποιηθεί το κλάσμα Α Β. Να λυθεί η εξίσωση: Α Β = 7. Σε ισοσκελές τρίγωνο ΑΒ, προεκτείνουμε τη βάση Β κατά Β = Ε. Να αποδείξετε ότι το τρίγωνο ΑΕ είναι ισοσκελές. Να συγκρίνετε τις αποστάσεις των Β και από τις Α και ΑΕ αντίστοιχα.

31 ΥΜΝΑΣΙΟ Α. Τι λέγεται ταυτότητα; ΘΕΜΑΤΑ Β. Να γράψετε 5 ταυτότητες συνδέοντας με = τις παραστάσεις της Ομάδας Α με τις σωστές παραστάσεις από την Ομάδα Β. ΟΜΑΑ Α (α + β)(α αβ + β ) (α + β) (α β)(α + αβ + β ) (α + β) 3 (α + β)(α β) ΟΜΑΑ Β α + β α 3 + β 3 α β α 3 β 3 α + αβ + β α α β + 3αβ + β 3. Να αποδείξετε τις ταυτότητες: (α β) = α αβ + β (α β) 3 = α 3 3 α β + 3αβ β 3 Θέμα ο Α. Ποια πρόταση λέγεται θεώρημα του Θαλή; (σχήμα και προτάσεις) Β. Να αναφέρετε την εφαρμογή του θεωρήματος Θαλή στο τρίγωνο (σχήμα και πρόταση). ίνονται οι παρακάτω εξισώσεις. Να δείξετε ότι μόνο μία από αυτές δεν είναι αδύνατη και να βρείτε τις λύσεις της: = 0, = 0, = 0 Άσκηση η ίνεται τρίγωνο ΑΒ με πλευρές α = 8m, β = 9m και γ = 10m. Να υπολογίσετε τις γωνίες Α, Β και του τριγώνου. 3y + 14 = 4 Να λύσετε το σύστημα: +1 y + 8 = 3 5

32 ΥΜΝΑΣΙΟ Α. Τι λέγεται ταυτότητα; Β. Να αποδείξετε την ταυτότητα: (α + β) 3 = α 3 + 3α β +3αβ + β 3. Να γράψετε σε παραγοντοποιημένη μορφή τις παραστάσεις (μόνο το αποτέλεσμα): Α. α αβ + β = Β. α β =. α 3 + β 3 = Θέμα ο Α. Με τη βοήθεια του σχήματος να ορίσετε τους τριγωνομετρικούς αριθμούς της γωνίας ω (ημω, συνω, εφω). M(, y) ρ Β. Να αποδείξετε ότι, για μια γωνία ω με 0 ω 180, ισχύει: O y ω ημ ω + συν ω = 1 Να λύσετε την εξίσωση: = 3 Άσκηση η Να λύσετε το σύστημα: 3( y) + ( y) = 6 + y y 1 = 5 10 Στο παρακάτω σχήμα το τρίγωνο ΑΒ είναι ισοσκε- λές με ΑΒ = Α και το σημείο Μ είναι μέσο της Β. Επίσης ισχύει ότι Β = Ε. Να αποδείξετε ότι: Α. το τρίγωνο ΜΕ είναι ισοσκελές. Β. τα τρίγωνα ΑΒ και ΑΕ είναι όμοια. M

33 ΥΜΝΑΣΙΟ Α. Τι ονομάζεται ταυτότητα;. Να συμπληρωθούν οι ταυτότητες: α β = (α β) 3 =. Αποδείξτε την ταυτότητα: Θέμα ο (α β) = α αβ + β 11 Α. Να οριστούν οι τριγωνομετρικοί αριθμοί τυχαίας γωνίας ω με 0 ω 180 Β. Να αποδειχτεί η ταυτότητα ημ ω + συν ω = 1. (Να γίνει το κατάλληλο σχήμα). Α. Να απλοποιηθούν οι παραστάσεις: Α = και Β = 6 Β. Να λυθεί η εξίσωση: Α + Β = 4 όπου Α και Β οι απλοποιημένες παραστάσεις του α ερωτήματος. Άσκηση η Να λυθεί το σύστημα: 3 + y + 5 = y ( y) = +, ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α). Στις προεκτάσεις της βάσης Β παίρνουμε αντίστοιχα σημεία και Ε τέτοια ώστε Β = Ε. Να αποδείξετε ότι: Α. Τα τρίγωνα ΑΒ και ΑΕ είναι ίσα. Β. Το τρίγωνο ΑΕ είναι ισοσκελές.

34 ΥΜΝΑΣΙΟ Α. Σε ορθογώνιο σύστημα αξόνων με βάση τις συντεταγμένες του σημείου Μ(, y) y α. Να ορίσετε τους τριγωνομετρικούς αριθμούς M(, y) της γωνίας ω = ομ. β. Να αποδείξετε την ισότητα: εφω = ημω συνω. ρ ω y γ. Υπάρχει γωνία, ώστε ημω = 0 και συνω = 0; (Να υπάρξει δικαιολόγηση). Θέμα ο Α. Να συμπληρώσετε τις ταυτότητες: α β =. α β β α Β. Να αποδειχθεί η ταυτότητα: α 3 β 3 = α β α αβ β. Είναι σωστή η ισότητα: α β = β α ; Να λυθεί η εξίσωση: 6 8 = 0 Άσκηση η Να λυθεί το σύστημα: 4 y y 1 = y 1 =1 4 Στο ισόπλευρο τρίγωνο ΑΒ κάθε πλευρά είναι 8cm και τα ΑΖ, Β, Ε είναι 3cm. Να αποδείξετε ότι το τρί- Z γωνο ΕΖ είναι ισόπλευρο. Ε

35 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: 13 α. (α β) = β. (α + β) 3 = γ. (α + β)(β α) = Β. Να συμπληρωθεί και να αποδειχθεί η ταυτότητα: α 3 β 3 = Θέμα ο Α. Να διατυπωθούν τα κριτήρια ισότητας δύο τυχαίων τριγώνων (κανόνας και σχήμα για κάθε περίπτωση) Β. Πότε δύο τρίγωνα είναι όμοια (κανόνας). Τα όμοια τρίγωνα είναι και ίσα; ικαιολογήστε την απάντησή σας. Α. Να παραγοντοποιηθούν και να απλοποιηθούν οι παραστάσεις: Α = Β = = 3 Β. Να λυθεί η εξίσωση: Α + Β = όπου Α, Β και οι απλοποιημένες παραστάσεις του πρώτου ερωτήματος. Άσκηση η 3 y =11 Να λυθεί το σύστημα: 1 y + = 3 ίνεται ισοσκελές τρίγωνο ΑΒ(ΑΒ = Α). Από τα μέσα και Ε των ΑΒ, Α αντίστοιχα φέρνουμε Μ και ΕΝ κάθετα στη Β. Να αποδείξετε ότι: Α. Τα τρίγωνα ΒΜ και ΕΝ είναι ίσα. Β. Τα τρίγωνα ΑΕ και ΑΒ είναι όμοια. M N

36 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις σχέσεις που ακολουθούν ώστε να προκύψουν γνωστές ταυτότητες: α. (α + β) = β. (α + β) 3 = γ. α β =. δ. α 3 β 3 =. Β. Να συμπληρώσετε και να αποδείξετε την ταυτότητα (α β) =... Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές (Σ) ή Λανθασμένες (Λ): α. (α β) 3 = α 3 β 3 β. + (α + β) + αβ = ( α)( β) Θέμα ο Α. Να διατυπώσετε το θεώρημα του Θαλή. Β. Να κάνετε το αντίστοιχο σχήμα και να γράψετε τη σχέση που το εκφράζει.. Στο διπλανό σχήμα είναι Ε // Β. Να γράψετε τη σχέση που ισχύει λόγω αυτής της παραλληλίας. ίνονται οι εξισώσεις: 9 5 = 0 και = 0.. Να λύσετε τις παραπάνω εξισώσεις. Β. Να παραγοντοποιήσετε τα τριώνυμα: 9 5 = 0 και = Να απλοποιήσετε το κλάσμα Άσκηση η Να υπολογιστεί η τιμή της παράστασης: Α = ημ150 + συν160 ημ30 + συν0 + εφ130 + εφ50. ίνεται το σύστημα: 5 y +1 + = y 6 = 4 3 α + βy = γ Να το φέρετε στη μορφή, α + β y = γ και στη συνέχεια να το λύσετε.

37 ΥΜΝΑΣΙΟ Α. Να συμπληρωθούν οι παρακάτω ταυτότητες: α. (α β) (α + β) = β. (α β) (α + αβ + β ) = γ. (α β) 3 = δ. (α + β) = Β. Να αποδειχτεί η ταυτότητα: (α + β) 3 = α α β + 3 αβ + β 3 Θέμα ο Α. Να διατυπώσετε τα κριτήρια ισότητας τυχαίων τριγώνων. Β. Να διατυπώσετε το Θεώρημα του Θαλή (δώστε το σχήμα και τη σχέση που ισχύει). Να λύσετε την παρακάτω εξίσωση: = Άσκηση η ( 1) 3(y + ) = 4 Να λύσετε το παρακάτω σύστημα: 5 4(y ) = 3( + 5) Να υπολογίσετε τις τιμές των παρακάτω παραστάσεων: Α = ημ135 συν10 εφ150 = Β = ημ45 συν135 εφ60 εφ150

38 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: (α + β) =. (α + β) 3 =. (α + β)(α β) =. Β. Να συμπληρώσετε και να αποδείξετε την ταυτότητα (α β) =. Θέμα ο Α. Να διατυπώσετε τα κριτήρια ισότητας δύο τριγώνων. Β. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές και (Λ) αν είναι λανθασμένες: α. Σε δύο ίσα τρίγωνα απέναντι από ίσες γωνίες βρίσκονται ίσες πλευρές. β. Αν δύο τρίγωνα έχουν τις γωνίες τους ίσες μία προς μία τότε είναι ίσα. γ. Σε δύο τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες. Να κάνετε τις πράξεις στην παράσταση: ( + 3) + ( ) ( 1)( + 1) Άσκηση η + y = 1 Να λύσετε το σύστημα: + 4 y 6 = 1 3 Αν για την αμβλεία γωνία ω ισχύει συνω = 3, τότε να υπολογίσετε τους άλλους τριγωνο- 5 μετρικούς αριθμούς της γωνίας ω.

39 ΥΜΝΑΣΙΟ Α. ώστε τον ορισμό του μονώνυμου. Β. Να συμπληρώσετε τις παρακάτω ταυτότητες: α. (α β) 3 =. β. α 3 β 3 =... Να αποδείξετε ότι (α β) = α αβ + β Θέμα ο Α. Να διατυπώσετε τα κριτήρια ισότητας τυχαίων τριγώνων. Β. Να διατυπώσετε το Θεώρημα του Θαλή.. Να αποδείξετε ότι για κάθε γωνία ω είναι: ημ ω + συν ω = 1. ίνονται τα πολυώνυμα: Α() = ( ) +1 +( ) [( 4) + 4] και Β() = ( + 5) ( + 5).. Να αποδείξετε ότι Α() = Να παραγοντοποιήσετε τα Α() και Β() και να απλοποιήσετε την παράσταση () = Α() Β(), δείχνοντας ότι ισούται με 1. ( + 5)( +1). Να λύσετε την εξίσωση () = 1 δείχνοντας ότι οι ρίζες της είναι το και το 3. Άσκηση η Α. Να λυθεί το σύστημα: y 1 = 3 y y = 4 δείχνοντας ότι η λύση του είναι (, y) = (, 4 ). Β. ια τις τιμές των και y του πρώτου ερωτήματος να αποδείξετε ότι: ( α β) + y( β + α) = [α(α 6β) + β ]. Να αποδείξετε ότι η λύση του συστήματος του πρώτου ερωτήματος είναι κορυφή της τετραγωνικής συνάρτησης y = + 4. ίνεται ισοσκελές τρίγωνο ΑΒ με βάση Β. Αν Μ μέσο της Β και Ρ και Ν μέσα των ΑΒ και Α αντίστοιχα, τότε: Α. Να δείξετε ότι τα τρίγωνα ΒΜΡ και ΜΝ είναι ίσα. Β. Να δείξετε ότι τα τρίγωνα ΜΝ και ΑΒ είναι όμοια με λόγο λ = 1.. Αν ω = ΝΜ και συνω = λ + 3 συνω + ημ(180 ) εφω να αποδείξετε ότι: 10 εφω συν(180 Β) =

40 ΥΜΝΑΣΙΟ Α. Να συμπληρώσετε τις ταυτότητες: (α + β) = α β =. (α β) = (α + β) 3 =.. Β. Να αποδείξετε την ταυτότητα: (α β) 3 = α 3 3α β + 3αβ β 3. Πότε ισχύει ο τύπος: (α + β) = α + β Θέμα ο Να γράψετε: Α. Πότε δύο τρίγωνα είναι ίσα μεταξύ τους ( κριτήρια ισότητας τριγώνων) Β. Πότε δύο ορθογώνια τρίγωνα είναι ίσα μεταξύ τους (κριτήρια ισότητας ορθογωνίων τριγώνων). Σε τρίγωνο ΑΒ (ΑΒ < Α) προεκτείνουμε την ΑΒ προς το μέρος του Β και παίρνουμε σημείο έτσι ώστε Α = Α. Στην πλευρά Α παίρνουμε σημείο Ε, έτσι ώστε ΑΒ = ΑΕ. Να αποδείξετε ότι Ε = Β. Άσκηση η Να λύσετε την εξίσωση: 4 3( ) = + 5 Να απλοποιήσετε τις παραστάσεις Α και Β: Α = (ημ5 + συν5 ) + (συν155 + ημ155 ) Β = ημ 4 α συν 4 α + συν α

41 ΥΜΝΑΣΙΟ Α. Να διατυπώσετε το Θεώρημα του Θαλή. Β. Αν Ε // Β, να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), α. γ. αν είναι λανθασμένες: Β Ε = ΑΒ Α ΑΒ Α = Α Ε Θέμα ο β. δ. Α Β = Ε ΑΕ Α ΑΒ = ΑΕ Α Α. Να συμπληρώσετε τις ισότητες των παρακάτω αξιοσημείωτων ταυτοτήτων και στη συνέχεια να τις αποδείξετε: α. (α β) = β. α β = γ. (α + β) = Β. Επιλέξτε αν είναι σωστές ή λάθος οι παρακάτω προτάσεις: Σ - Λ α. Ισχύει πάντα ότι: (α β) = ( α + β) 1 β. Ισχύει ότι: + = γ. Ισχύει ότι: (5ω + 4) = 5ω + 16 δ. Ισχύει ότι: (3 y) = 3 3 y + y Να λύσετε τα συστήματα: Α. Άσκηση η 3 7y =1 4 + y = 53 Α. Να μετατρέψετε σε γινόμενα τις παραστάσεις:. 5( + y) (3 +11y) =14 7 9y 3( 4y) = 38 α β γ. y + y δ ε. 1 α + βγ + α β γ 1 Β. Να λύσετε την εξίσωση: = 1 +1 ίνεται ισοσκελές τρίγωνο ΑΒ(ΑΒ = Α) και Μ το μέσον της βάσης Β. Από το Μ φέρνουμε τα τμήματα Μ και ΜΕ κάθετα προς τις πλευρές ΑΒ και Α αντίστοιχα. Να δείξετε ότι: Α. Τα τρίγωνα ΒΜ και ΕΜ είναι ίσα, Β. Το τρίγωνο ΑΕ είναι ισοσκελές.

42 (α + β) 3 = α 3 + 3α β + 3αβ + β 3 ΥΜΝΑΣΙΟ Α. Τι ονομάζεται διάμεσος ενός τριγώνου και τι ονομάζεται ύψος ενός τριγώνου; Β. Να διατυπώσετε τα κριτήρια ισότητας δύο τριγώνων.. Ποια από τα παρακάτω ζεύγη τριγώνων είναι ίσα τρίγωνα; (Να μη δικαιολογήσετε την απάντησή σας) Α Z Z Ε Ζ Ε Ζ Θέμα ο Α. Τι ονομάζεται ταυτότητα; Β. Να γράψετε 5 αξιοσημείωτες ταυτότητες που γνωρίζετε (εκτός από την ταυτότητα του ερωτήματος γ).. Αποδείξτε την ταυτότητα: Να λυθεί το σύστημα: Άσκηση η y 1 + y 1 = = + 3 (y 1) ( ) ( ) y 1 Να λυθεί η εξίσωση: = y +1 H y Στο παρακάτω σχήμα έχουμε ότι ΕΖ // Β και ΖΗ //. Να υπολογίσετε τα τμήματα 10cm 8cm Z 6cm και y.

43 ΥΜΝΑΣΙΟ Α. Στο διπλανό σχήμα δίνεται σημείο Μ(, y) τέτοιο ώστε ΧΟΜ = ωκαι ΟΜ = ρ. Να ορίσετε τους τριγωνομετρικούς αριθμούς της γωνίας ω. Β. Να αποδείξετε ότι: ημ ω + συν ω =1.. Να χαρακτηρίσετε τις παρακάτω προτάσεις με την ένδειξη Σ ή Λ: Ο y y ω z M(, y) α. Εάν ημ ω = 3 5 τότε συν ω = 5 β. συν180 = 1 γ. ημ150 = ημ30 δ. Εάν συνω = 0 τότε εφω = 0 Θέμα ο Α. Τι λέγεται παραγοντοποίηση; Β. Αποδείξτε ότι: (α + β) 3 = α 3 + 3α β + 3αβ + β 3 προτάσεις με την ένδειξη Σ ή Λ: α. α 3 β 3 = (α + β)(α αβ + β ) β. (α + β)(α β) = β α γ. Ισχύει +1 = +1 για κάθε 0 δ. Το Ε. Κ. Π. των 6 y, 3y, 1 είναι 1 y. Α. Να λυθεί η εξίσωση: ( +1) + 3( 1) = 7( + 3) 3 1 Β. Να λυθεί η εξίσωση: + 1 =. Να λυθεί η εξίσωση: κ 7 + λ + = 0 όπου κ η λύση που βρήκατε στο (α) και λ η λύση που βρήκατε στο (β). Άσκηση η ίνεται γωνία Oy και στις πλευρές της Ο, O Οy τα σημεία Α, και Β, αντίστοιχα ώστε: ΟΑ = ΟΒ, Ο = Ο. είξτε ότι: Α. ΟΒ = ΟΑ ίνονται οι παραστάσεις: Β. ΚΑ = ΚΒ. ΑΒ // K y Α = ημ30 + συν ημ60 Β = 5 (ημ70 ημ110 συν70 συν110 ) Α. είξτε ότι Α = 3, Β = 5 Β. Εάν ημω = Α, όπου Α, Β οι τιμές του (α) ερωτήματος και ω αμβλεία, βρείτε το συνω και Β την εφω. 5 ημ(180 ω) 5 συν(180 ω). Υπολογίστε την παράσταση: Κ =. 4 εφ(180 ω) 3

44 ΥΜΝΑΣΙΟ Α. Τι ονομάζεται ταυτότητα; Β. Να αποδείξετε ότι: (α β) 3 = α 3 3α β + 3αβ β 3. Να χαρακτηρίσετε ως Σωστό ή Λάθος τις σχέσεις: α. ( y) = + y + y β. ( + α) (4 + α + α ) = 8 + α 3 γ. (α β) 3 = (β α) 3 δ. ( y) ( + y) = y Θέμα ο Στο διπλανό σχήμα δίνεται σημείο Μ(, y), τέτοιο ώστε να είναι γωνία ΟΜ = ω και ΟΜ = ρ. Α. Να ορίσετε τους τριγωνομετρικούς αριθμούς της γωνίας ω. Β. Με την προϋπόθεση ότι συνω 0 να αποδείξετε ότι εφω = ημω συνω.. Να συμπληρωθούν οι ισότητες: ημ(180 ω) = συν(180 ω) = εφ(180 ω) =.. ( + ) + (y 1) (y 1) (y + 1) = y (y + 1) + Να λυθεί το σύστημα: y 1 = 3 3 Άσκηση η Α. Αφού πρώτα βρείτε τις τιμές για τις οποίες ορίζονται, να απλοποιήσετε τα κλάσματα: Κ = και Λ =. 18 ( ) Β. Στη συνέχεια να λύσετε την εξίσωση: ίνεται τρίγωνο ΑΒ με ΑΒ = Α. Στις προεκτάσεις της βάσης Β παίρνουμε σημεία, Ε έτσι ώστε Β = Ε. Αν είναι Κ ΑΒ, ΕΛ Α και ΑΖ Β. Να αποδεί- M(, y) Λ + 3 = 3 + Κ 9 ρ y ω y ξετε ότι: Α. Τα τρίγωνα ΑΒ και ΑΕ είναι ίσα. Β. Τα τρίγωνα ΒΚ και ΕΛ είναι ίσα.. Τα τρίγωνα ΒΚ και ΑΒΖ είναι όμοια και να γράψετε τους αντίστοιχους λόγους ομοιότητας. K Z Λ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ 119 α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται. Δώστε ένα παράδειγμα μονωνύμου. β. Να αποδείξετε την ταυτότητα: ( ) α + β = α + αβ + β γ. Να

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Θέματα απολυτήριων εξετάσεων Γ Γυμνασίου σχολικού έτους 013-014 ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των απολυτήριων εξετάσεων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ Μαθηματικό Περιηγητή 97 ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ 1. Τα θέματα και στι 3 τάξει του Γυμνασίου χωρίζονται σε δύο κατηγορίε. Στα θέματα τη θεωρία

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; xa,, 5, x, 5 x a (σελ. 6)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Μαθημαηικά Γ Γυμμαζίου

Μαθημαηικά Γ Γυμμαζίου Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις

Διαβάστε περισσότερα

2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση.

2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση. ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΤΑΞΗ: Γ Α. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Επιλέγετε και απαντάτε σε ένα (1) από τα δύο θέματα θεωρίας ΘΕΜΑ 1 ο Α) Να αποδείξετε την ταυτότητα ( α+β) = α + αβ + β. Β)

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.. Να συμπληρώσετε τα κενά : i) (α μ ) ν = ii) (κ.λ) ν = iii) α μ.α ν = iv) α μ : α ν =. v) (α : β) ν =.. vi) α -ν = a vii)... viii) a...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ. Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ 008 65 ΥΜΝΑΣΙΟ 008 66 α. Πότε μια γωνία λέγεται εγγεγραμμένη και πότε επίκεντρη; β. Ποια είναι η σχέση μεταξύ επίκεντρης και εγγεγραμμένης γωνίας, που βαίνουν στο ίδιο τόξο; γ. Πότε δύο τόξα μ

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ. Να αποδείξετε ότι: 4 4. Αν x, να υπολογίσετε την τιμή της παράστασης: x x. Να απλοποιήσετε τις παρακάτω παραστάσεις: 8 8 8, 7 48 4. 4. Να υπολογίσετε τα αναπτύγματα: i. x ii. α β

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Συλλογή-Επιμέλεια: Γ. Κοντογιάννης, Μαθηματικός ΜPhil Α Λυκείου Άλγεβρα Θέματα Εξετάσεων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΠΝΗΠΤΙ ΘΜΤ ΜΘΗΜΤΙΩΝ ΥΜΝΣΙΟΥ ΘΜ 1 ίνονται οι αλγεβρικές παραστάσεις x 1 3 x x 1 10x 19 και B x x 5 x 4. α) Να κάνετε τις πράξεις και να δείξετε ότι A x 3x 9x 7 και B 3x 6x 7x 54. β) Να παραγοντοποιήσετε

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο

Γυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο 113 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο Θέματα εξετάσεων ΤΑΞΗ Β! περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε τον ορισμό της δύναμης α ν με βάση το ρητό α και εκθέτη το φυσικό αριθμό ν >

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

( ) ( ( 2 ) ( 2 ) y να υπολογιστεί η α) Για ποιες τιμές του χ δεν ορίζεται η διπλανή παράσταση. Β) Να απλοποιηθεί η διπλανή παράσταση.

( ) ( ( 2 ) ( 2 ) y να υπολογιστεί η α) Για ποιες τιμές του χ δεν ορίζεται η διπλανή παράσταση. Β) Να απλοποιηθεί η διπλανή παράσταση. Ασκήσεις 1. Να υπολογιστεί η παράσταση: 5 6 6. Να αποδειχθεί ότι: ( ) ( ) (90 ) (90 ) (180 ) 1 (180 ) (180 ) ( ) ( ) ( ) ( ). Να λυθούν τα συστήματα :. Να λυθούν οι εξισώσεις: 1 y 1 5y 7 0 y 1 0 5 6 y

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ : ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ 1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω µε 0 ο ω 180 ο ΘΕΩΡΙΑ 1. Τριγωνοµετρικοί αριθµοί οξειών γωνιών ορθογωνίου τριγώνου Στο διπλανό ορθογώνιο τρίγωνο θυµίζουµε ότι απέναντι κάθετη ηµω = = ΑΓ υποτείνουσα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0 ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΙ ΠΡΟΤΟΙΜΣΙ Ι ΤΙΣ ΞΤΣΙΣ - Σελίδα από 6 - . Η ΔΟΜΗ ΤΩΝ ΘΜΤΩΝ ΤΩΝ ΞΤΣΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις. µείς θα πρέπει

Διαβάστε περισσότερα

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας.

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας. Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας. 1.Δίνεται η παράσταση: A x 1 x x 1x 1 α)να αποδείξετε ότι Ax 11 β)να λύσετε την εξίσωση A 1x γ)να

Διαβάστε περισσότερα

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 ΘΕΜΑ 1 Ο Α. Για κάθε πραγµατικό αριθµό α και β να δείξετε ότι ( α + β α + αβ + β Β. Να συµπληρώσετε τα αναπτύγµατα των ταυτοτήτων ( α β ( α β 3 ( α β ( α β + ΘΕΜΑ Ο Α. Στο διπλανό σχήµα

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά Α Τάξης Γυμνασίου Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου

Μαθηματικά Β Γυμνασίου Μαθηματικά Β Γυμνασίου Περιεχόμενα KEΦΑΛΑΙΟ 1 ΕΞΙΣΩΣΕΙΣ... 3 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ... 3 1.2 ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ... 3 1.3 ΕΠΙΛΥΣΗ ΤΥΠΩΝ... 4 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1 ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα